Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
2.
Am Nat ; 201(5): 725-740, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37130232

RESUMO

AbstractAnimals regulate their food intake to maximize the expression of fitness traits but are forced to trade off the optimal expression of some fitness traits because of differences in the nutrient requirements of each trait ("nutritional trade-offs"). Nutritional trade-offs have been experimentally uncovered using the geometric framework for nutrition (GF). However, current analytical methods to measure such responses rely on either visual inspection or complex models of vector calculations applied to multidimensional performance landscapes, making these approaches subjective or conceptually difficult, computationally expensive, and, in some cases, inaccurate. Here, we present a simple trigonometric model to measure nutritional trade-offs in multidimensional landscapes (nutrigonometry) that relies on the trigonometric relationships of right-angle triangles and thus is both conceptually and computationally easier to understand and use than previous quantitative approaches. We applied nutrigonometry to a landmark GF data set for comparison of several standard statistical models to assess model performance in finding regions in the performance landscapes. This revealed that polynomial (Bayesian) regressions can be used for precise and accurate predictions of peaks and valleys in performance landscapes, irrespective of the underlying structure of the data (i.e., individual food intakes vs. fixed diet ratios). We then identified the known nutritional trade-off between life span and reproductive rate in terms of both nutrient balance and concentration for validation of the model. This showed that nutrigonometry enables a fast, reliable, and reproducible quantification of nutritional trade-offs in multidimensional performance landscapes, thereby broadening the potential for future developments in comparative research on the evolution of animal nutrition.


Assuntos
Longevidade , Reprodução , Animais , Teorema de Bayes , Reprodução/fisiologia , Meio Ambiente , Nutrientes
3.
J Evol Biol ; 36(8): 1102-1115, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37341163

RESUMO

In many species, the order in which males mate with a female explains much of the variation in paternity arising from post-copulatory sexual selection. Research in Drosophila suggests that mating order may account for the majority of the variance in male reproductive success. However, the effects of mating order on paternity bias might not be static but could potentially vary with social or environmental factors. To test this idea, we used an existing dataset, collated from an experiment we previously published (Morimoto et al., PLoS One, 11, 2016, e0154468), with the addition of unpublished data from the same experiment. These previous experiments manipulated larval density in Drosophila melanogaster which generated variation in male and female body size, assembled groups of individuals of different sizes, and measured the mating success and paternity share of focal males. The data presented here provides information on each focal male's mating order and the frequency in which focal males remated with same females ('repetitive matings'). We combined this information with our previously reported focal male reproductive success to partition variance in paternity into male mating order and repetitive matings across groups that differed in the body size composition of males and females. We found, as expected, that male mating order explained a considerable portion of the variance in male paternity. However, we also found that the impact of male mating order on male paternity was influenced by the body size composition of groups. Specifically, males that tended to mate last had a greater paternity advantage, and displayed lower variance, in groups containing a heterogenous mixture male body sizes than in groups with a single male body size. Repetitive mating only had a minor contribution to the variance in male paternity share across all experiments. Overall, our findings contribute to the growing body of research showing that post-copulatory sexual selection is subject to socio-ecological influences.


Assuntos
Comportamento Sexual Animal , Seleção Sexual , Animais , Masculino , Feminino , Drosophila melanogaster , Grupo Social , Sêmen , Espermatozoides , Reprodução , Drosophila
4.
Odontology ; 111(2): 401-408, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36181562

RESUMO

Conditions experienced in early life have long-lasting effects on offspring health. Despite this, little is known about how maternal exposure to drugs during pregnancy affects offspring teeth morphogenesis. In humans, omeprazole is a common drug used to mitigate Gastroesophageal Reflux Disease. Importantly, omeprazole is a non-specific proton-pump inhibitor, which may inhibit the proton pumps expressed in the developing tooth germ. To date, however, the effects of intrauterine life exposure to omeprazole on offspring tooth development remain unknown. In this study, we addressed this gap in a murine model. Pregnant female Swiss mice were exposed to daily doses of 40 mg/kg of omeprazole from the 5th to the 17th day of pregnancy and the effects of such exposure on offspring odontogenesis parameters such as morphological abnormalities, disruptions in the ameloblast and odontoblast layers and the presence of dentin matrix were measured. Omeprazole exposure significantly increased the prevalence (control: 21.6%; treatment: 60%; p = 0.001) and the risk (posterior mean and 95% credible interval; control: 0.230 [0.129; 0.347]; treatment: 0.593 [0.449; 0.730]) of offspring teeth morphological abnormalities, although there were no statistically significant effects of omeprazole exposure on other parameters of tooth development. These findings suggest that there are potential side-effects to offspring oral health of omeprazole use during pregnancy.


Assuntos
Refluxo Gastroesofágico , Omeprazol , Humanos , Gravidez , Feminino , Animais , Camundongos , Omeprazol/efeitos adversos , Modelos Animais de Doenças , Inibidores da Bomba de Prótons/efeitos adversos , Odontogênese
5.
Am Nat ; 199(5): E170-E185, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35472016

RESUMO

AbstractHabitat quality early in life determines individual fitness, with possible long-term evolutionary effects on groups and populations. In holometabolous insects, larval ecology plays a major role in determining the expression of traits in adulthood, but how ecological conditions during the larval stage interact to shape adult life history and fitness, particularly in nonmodel organisms, remains subject to scrutiny. Consequently, our knowledge of the interactive effects of ecological factors on insect development is limited. Here, using the polyphagous fly Bactrocera tryoni, we conducted a fully factorial design where we manipulated larval density and larval diet (protein rich, standard, and sugar rich) to gain insights into how these ecological factors interact to modulate adult fitness. As expected, a protein-rich diet resulted in faster larval development and heavier and leaner adults that were more fecund compared with the standard and sugar-rich diets, irrespective of larval density. Females from the protein-rich larval diet had overall higher reproductive rate (i.e., eggs per day) than females from other diets, and reproductive rate decreased linearly with density for females from the protein-rich diet but nonlinearly for females from the standard and sugar-rich diets over time. Surprisingly, adult lipid reserve increased with larval density for adults from the sugar-rich diet (as opposed to decreasing as in other diets), possibly because of a stress response to an extremely adverse condition during development (i.e., high intraspecific competition and poor nutrition). Together, our results provide insights into how ecological factors early in life interact and shape the fate of individuals through life stages in holometabolous insects.


Assuntos
Características de História de Vida , Tephritidae , Animais , Dieta , Feminino , Insetos , Larva , Açúcares
6.
J Exp Biol ; 225(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35904096

RESUMO

Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females raised on a sugar-rich larval diet than for females raised on a protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared with a protein- or sugar-rich diet, while body lipid reserves were higher for those that had consumed the sugar-rich larval diet compared with other diets. Body protein reserves were lower for flies that had been raised on the sugar-rich larval diet compared with other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.


Assuntos
Tephritidae , Animais , Dieta , Ingestão de Alimentos , Feminino , Larva/fisiologia , Masculino , Açúcares , Tephritidae/fisiologia
7.
J Math Biol ; 84(7): 58, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680762

RESUMO

Living organisms are limited in the range of values of ecological factors they can explore. This defines where animals exist (or could exist) and forms an ecological fingerprint that explains species' distribution at global scales. Species' ecological fingerprints can be represented as a n-dimensional hypervolume - known as Hutchinson's niche hypervolume. This concept has enabled significant progress in our understanding of species' ecological needs and distributions across environmental gradients. Nevertheless, the properties of Hutchinson's n-dimensional hypervolumes can be challenging to calculate and several methods have been proposed to extract meaningful measurements of hypervolumes' properties. One key property of hypervolumes are holes, which provide important information about the ecological occupancy of species. However, to date, current methods rely on volume estimates and set operations to identify holes in hypervolumes. Yet, this approach can be problematic because in high-dimensions, the volume of region enclosing a hole tends to zero. We propose the use of persistence homology (PH) to identify holes in hypervolumes and in ecological datasets more generally. PH allows for the estimates of topological properties in n-dimensional niche hypervolumes independent of the volume estimates of the hypervolume. We demonstrate the application of PH to canonical datasets and to the identification of holes in the hypervolumes of five vertebrate species with diverse niches, highlighting the potential benefits of this approach to gain further insights into animal ecology. Overall, our approach enables the study of a yet unexplored property of Hutchinson's hypervolumes, and thus, have important implications to our understanding of animal ecology.


Assuntos
Ecologia , Ecossistema , Animais
8.
J Anim Ecol ; 89(2): 460-470, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31658371

RESUMO

Immunity and nutrition are two essential modulators of individual fitness. However, while the implications of immune function and nutrition on an individual's lifespan and reproduction are well established, the interplay between feeding behaviour, infection and immune function remains poorly understood. Asking how ecological and physiological factors affect immune responses and resistance to infections is a central theme of eco-immunology. In this study, we used the fruit fly, Drosophila melanogaster, to investigate how infection through septic injury modulates nutritional intake and how macronutrient balance affects survival to infection by the pathogenic Gram-positive bacterium Micrococcus luteus. Our results show that infected flies maintain carbohydrate intake, but reduce protein intake, thereby shifting from a protein-to-carbohydrate (P:C) ratio of ~1:4 to ~1:10 relative to non-infected and sham-infected flies. Strikingly, the proportion of flies dying after M. luteus infection was significantly lower when flies were fed a low-P high-C diet, revealing that flies shift their macronutrient intake as means of nutritional self-medication against bacterial infection. These results are likely due to the effects of the macronutrient balance on the regulation of the constitutive expression of innate immune genes, as a low-P high-C diet was linked to an upregulation in the expression of key antimicrobial peptides. Together, our results reveal the intricate relationship between macronutrient intake and resistance to infection and integrate the molecular cross-talk between metabolic and immune pathways into the framework of nutritional immunology.


Assuntos
Drosophila , Infecções , Animais , Dieta/veterinária , Drosophila melanogaster , Imunidade Inata , Nutrientes
9.
Am Nat ; 193(6): E168-E181, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31094594

RESUMO

Animals make feeding decisions to simultaneously maximize fitness traits that often require different nutrients. Recent quantitative methods have been developed to characterize these nutritional trade-offs from performance landscapes on which traits are mapped on a nutrient space defined by two nutrients. This limitation constrains the broad applications of previous methods to more complex data, and a generalized framework is needed. Here, we build on previous methods and introduce a generalized vector-based approach-the vector of position approach-to study nutritional trade-offs in complex multidimensional spaces. The vector of position approach allows the estimate of performance variations across entire landscapes (peaks and valleys) and comparison of these variations between animals. Using landmark published data sets on life span and reproduction landscapes, we illustrate how our approach gives accurate quantifications of nutritional trade-offs in two- and three-dimensional spaces and can bring new insights into the underlying nutritional differences in trait expression between species. The vector of position approach provides a generalized framework for investigating nutritional differences in life-history trait expression within and between species, an essential step for the development of comparative research on the evolution of animal nutritional strategies.


Assuntos
Comportamento Alimentar , Aptidão Genética , Modelos Biológicos , Animais
10.
BMC Microbiol ; 19(Suppl 1): 286, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870299

RESUMO

BACKROUND: Commensal microbes can promote survival and growth of developing insects, and have important fitness implications in adulthood. Insect larvae can acquire commensal microbes through two main routes: by vertical acquisition from maternal deposition of microbes on the eggshells and by horizontal acquisition from the environment where the larvae develop. To date, however, little is known about how microbes acquired through these different routes interact to shape insect development. In the present study, we investigated how vertically and horizontally acquired microbiota influence larval foraging behaviour, development time to pupation and pupal production in the Queensland fruit fly ('Qfly'), Bactrocera tryoni. RESULTS: Both vertically and horizontally acquired microbiota were required to maximise pupal production in Qfly. Moreover, larvae exposed to both vertically and horizontally acquired microbiota pupated sooner than those exposed to no microbiota, or only to horizontally acquired microbiota. Larval foraging behaviour was also influenced by both vertically and horizontally acquired microbiota. Larvae from treatments exposed to neither vertically nor horizontally acquired microbiota spent more time overall on foraging patches than did larvae of other treatments, and most notably had greater preference for diets with extreme protein or sugar compositions. CONCLUSION: The integrity of the microbiota early in life is important for larval foraging behaviour, development time to pupation, and pupal production in Qflies. These findings highlight the complexity of microbial relations in this species, and provide insights to the importance of exposure to microbial communities during laboratory- or mass-rearing of tephritid fruit flies.


Assuntos
Bactérias/classificação , Comportamento Consumatório/fisiologia , Tephritidae/fisiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Larva/crescimento & desenvolvimento , Larva/microbiologia , Filogenia , Pupa/crescimento & desenvolvimento , Pupa/fisiologia , Simbiose , Tephritidae/microbiologia
11.
Front Zool ; 16: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820236

RESUMO

BACKGROUND: The fitness of holometabolous insects depends largely on resources acquired at the larval stage. Larval density is an important factor modulating larval resource-acquisition, influencing adult survival, reproduction, and population maintenance. To date, however, our understanding of how larval crowding affects adult physiology and behaviour is limited, and little is known about how larval crowding affects adult non-reproductive ecological traits. Here, larval density in the rearing environment of the polyphagous fruit fly Bactrocera tryoni ('Queensland fruit-fly') was manipulated to generate crowded and uncrowded larval treatments. The effects of larval crowding on pupal weight, adult emergence, adult body weight, energetic reserves, fecundity, feeding patterns, flight ability, as well as adult predation risk were investigated. RESULTS: Adults from the crowded larval treatment had lower adult emergence, body weight, energetic reserves, flight ability and fecundity compared to adults from the uncrowded larval treatment. Adults from the crowded larval treatment had greater total food consumption (i.e., consumption of yeast plus sucrose) relative to body weight for both sexes compared to adults from the uncrowded treatment. Furthermore, males from the crowded treatment consumed more yeast relative to their body weight than males from the uncrowded treatment, while females from the crowded treatment consumed more sucrose relative to their body weight than females from the uncrowded treatment. Importantly, an interaction between the relative consumptions of sucrose and yeast and sex revealed that the density of conspecifics in the developmental environment differentially affects feeding of adult males and females. We found no effect of larval treatment on adult predation probability. However, males were significantly more likely to be captured by ants than females. CONCLUSION: We show that larvae crowding can have important implications to ecological traits in a polyphagous fly, including traits such as adult energetic reserve, flight ability, and adult sex-specific nutrient intake. Our findings contextualise the effects of larval developmental conditions into a broad ecological framework, hence providing a better understanding of their significance to adult behaviour and fitness. Furthermore, the knowledge presented here can help us better understanding downstream density-dependent effects of mass rearing conditions of this species, with potential relevance to Sterile Insect Technique.

12.
J Theor Biol ; 467: 48-56, 2019 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-30735736

RESUMO

Finding resources is crucial for animals to survive and reproduce, but the understanding of the decision-making underlying foraging decisions to explore new resources and exploit old resources remains lacking. Theory predicts an 'exploration-exploitation trade-off' where animals must balance their effort into either stay and exploit a seemingly good resource or move and explore the environment. To date, however, it has been challenging to generate flexible yet tractable statistical models that can capture this trade-off, and our understanding of foraging decisions is limited. Here, I suggest that foraging decisions can be seen as multi-armed bandit problems, and apply deterministic (i.e., the Upper-Confidence-Bound or 'UCB') and Bayesian algorithms (i.e., Thompson Sampling or 'TS') to demonstrate how these algorithms generate testable a priori predictions from simulated data. Next, I use UCB and TS to analyse empirical foraging data from the tephritid fruit fly larvae Bactrocera tryoni to provide a qualitative and quantitative framework to quantify animal foraging behaviour. Qualitative analysis revealed that TS display shorter exploration period than UCB, although both converged to similar qualitative results. Quantitative analysis demonstrated that, overall, UCB is more accurate in predicting the observed foraging patterns compared with TS, even though both algorithms failed to quantitatively estimate the empirical foraging patterns in high-density groups (i.e., groups with 50 larvae and, more strikingly, groups with 100 larvae), likely due to the influence of intraspecific competition on animal behaviour. The framework proposed here demonstrates how reinforcement learning algorithms can be used to model animal foraging decisions.


Assuntos
Algoritmos , Tomada de Decisões , Modelos Estatísticos , Animais , Comportamento Alimentar , Larva , Modelos Biológicos , Tephritidae
13.
Biol Lett ; 13(7)2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28724687

RESUMO

There is increasing evidence of the far-reaching effects of gut bacteria on physiological and behavioural traits, yet the fitness-related consequences of changes in the gut bacteria composition of sexually interacting individuals remain unknown. To address this question, we manipulated the gut microbiota of fruit flies, Drosophila melanogaster, by monoinfecting flies with either Acetobacter pomorum (AP) or Lactobacillus plantarum (LP). Re-inoculated individuals were paired in all treatment combinations. LP-infected males had longer mating duration and induced higher short-term offspring production in females compared with AP-infected males. Furthermore, females of either re-inoculation state mated with AP-infected males were more likely to have zero offspring after mating, suggesting a negative effect of AP on male fertility. Finally, we found that the effects of male and female gut bacteria interacted to modulate their daughters', but not sons' body mass, revealing a new trans-generational effect of parental gut microbiota. In conclusion, this study shows direct and trans-generational effects of the gut microbiota on mating and reproduction.


Assuntos
Microbioma Gastrointestinal , Acetobacter , Animais , Drosophila melanogaster , Feminino , Masculino , Reprodução , Comportamento Sexual Animal
14.
Aging Cell ; 23(3): e14067, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38093527

RESUMO

Animals often regulate the intake and quantity of nutrients to maximise fitness through life-history traits such as lifespan, but we still lack a proper understanding of how specific nutrients influence these traits. Here, I developed an algorithm which allowed me to create a nutrient-specific database from literature data, and investigated how the requirements of protein (P) and carbohydrate (C) needed to maximise lifespan evolved across nine insect species. I found moderate evidence of a phylogenetic signal on the optimal ratio of protein to carbohydrate ratio (PC ratio) that maximised lifespan, suggesting that optimal PC ratio for lifespan could have evolved non-independently among related species. I also found evidence for weak-to-strong sex-specific optimal PC ratios for lifespan, suggesting that sex-specific nutritional needs to maximise lifespan can emerge and persist in some species. Although limited in the number of species, the approach adopted here is portable to experiments with n number of nutrients and, thus, can be used in complex comparative precision nutrition studies for insights into the evolution of animal nutrition.


Assuntos
Proteínas Alimentares , Longevidade , Animais , Feminino , Masculino , Longevidade/fisiologia , Filogenia , Proteínas Alimentares/metabolismo , Insetos/metabolismo , Carboidratos , Carboidratos da Dieta/metabolismo
15.
Front Insect Sci ; 4: 1376011, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660018

RESUMO

Climate change poses a significant threat to food security and global public health with the increasing likelihood of insect pest outbreaks. Alternative ways to control insect populations, preferably using environmental-friendly compounds, are needed. Turmeric has been suggested as a natural insecticide with toxicity properties in some insect groups. However, empirical evidence of the effects of turmeric - and their interaction with other ecological factors such as diet - on insect survival has been limited. Here, we tested the effects of turmeric and its interactions with diets differing in protein source in the common housefly, Musca domestica. We found that turmeric shortened lifespan independent of diet and sex. Females in turmeric diets were heavier at death, which was likely driven by a combination of relatively lower rates of body mass loss during their lifetime and a higher percentage of water content at death. Each sex responded differently to the protein source in the diet, and the magnitude of the difference in lifespan between sexes were greatest in diets in which protein source was hydrolysed yeast; individuals from both sexes lived longest in sucrose-milk diets and shortest in diets with hydrolysed yeast. There was no evidence of an interaction between turmeric and diet, suggesting that the toxicity effects are independent of protein source in the diet. Given the seemingly opposing effects of turmeric in insects and mammals being uncovered in the literature, our findings provide further evidence in support of turmeric as a potential natural insecticide.

16.
J Insect Physiol ; 153: 104600, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38145823

RESUMO

Prolonged exposure to food dyes, even for those considered safe for consumption, are known to have toxic effects. However, we lack a proper understanding of the underlying compounds that are responsible for the observed toxicity. Here, we tested the toxic effects of three common commercially available natural food dyes (red, green, blue), and their main ingredients (turmeric and spirulina), on Drosophila melanogaster oviposition, larval development, and larval foraging behaviour. Larval development and egg-to-adult survival was significantly impacted by blue and green dyes. These effects were recapitulated when flies were fed with increasing concentrations of turmeric and spirulina, suggesting that turmeric is a toxic component of the food dye. Red dye, which contains neither turmeric or spirulina, had little impact on fly health and behaviour. Green and blue food dyes decreased egg laying, an effect similar to that observed in increasing concentrations of turmeric and, to a lesser extent, spirulina. When given a choice, larvae preferred to feed as follows: control > red > blue > green diet patches, a pattern inversely correlating with the previously observed toxicity. Our results show that, despite turmeric being often considered a super food, it can have toxic effects that the impact health of organisms.


Assuntos
Drosophila , Spirulina , Feminino , Animais , Corantes/toxicidade , Drosophila melanogaster , Curcuma
17.
Sci Rep ; 13(1): 7466, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156830

RESUMO

Diet specialists and generalists face a common challenge: they must regulate the intake and balance of nutrients to achieve a target diet for optimum nutrition. When optimum nutrition is unattainable, organisms must cope with dietary imbalances and trade-off surplus and deficits of nutrients that ensue. Animals achieve this through compensatory rules that dictate how to cope with nutrient imbalances, known as 'rules of compromise'. Understanding the patterns of the rules of compromise can provide invaluable insights into animal physiology and behaviour, and shed light into the evolution of diet specialisation. However, we lack an analytical method for quantitative comparisons of the rules of compromise within and between species. Here, I present a new analytical method that uses Thales' theorem as foundation, and that enables fast comparisons of the rules of compromise within and between species. I then apply the method on three landmark datasets to show how the method enables us to gain insights into how animals with different diet specialisation cope with nutrient imbalances. The method opens new avenues of research to understand how animals cope with nutrient imbalances in comparative nutrition.


Assuntos
Dieta , Estado Nutricional , Animais , Nutrientes
18.
Insect Sci ; 30(2): 539-554, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36115064

RESUMO

Intraspecific competition at the larval stage is an important ecological factor affecting life-history, adaptation and evolutionary trajectory in holometabolous insects. However, the molecular pathways underpinning these ecological processes are poorly characterized. We reared Drosophila melanogaster at three egg densities (5, 60, and 300 eggs/mL) and sequenced the transcriptomes of pooled third-instar larvae. We also examined emergence time, egg-to-adult viability, adult mass, and adult sex-ratio at each density. Medium crowding had minor detrimental effects on adult phenotypes compared to low density and yielded 24 differentially expressed genes (DEGs), including several chitinase enzymes. In contrast, high crowding had substantial detrimental effects on adult phenotypes and yielded 2107 DEGs. Among these, upregulated gene sets were enriched in sugar, steroid and amino acid metabolism as well as DNA replication pathways, whereas downregulated gene sets were enriched in ABC transporters, taurine, Toll/Imd signaling, and P450 xenobiotics metabolism pathways. Overall, our findings show that larval crowding has a large consistent effect on several molecular pathways (i.e., core responses) with few pathways displaying density-specific regulation (i.e., idiosyncratic responses). This provides important insights into how holometabolous insects respond to intraspecific competition during development.


Assuntos
Drosophila melanogaster , Transcriptoma , Animais , Drosophila melanogaster/genética , Larva , Aglomeração , Fenótipo
19.
Neotrop Entomol ; 52(3): 407-421, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36918492

RESUMO

Emerging evidence suggests that insect populations may be declining at local and global scales, threatening the sustainability of the ecosystem services that insects provide. Insect declines are of particular concern in the Neotropics, which holds several of the world's hotspots of insect endemism and diversity. Conservation policies are one way to prevent and mitigate insect declines, yet these policies are usually biased toward vertebrate species. Here, we outline some key policy instruments for biodiversity conservation in the Neotropics and discuss their potential contribution and shortcomings for insect biodiversity conservation. These include species-specific action policies, protected areas and Indigenous and Community Conserved Areas (ICCAs), sectoral policies, biodiversity offsetting, market-based mechanisms, and the international policy instruments that underpin these efforts. We highlight that although these policies can potentially benefit insect biodiversity indirectly, there are avenues in which we could better incorporate the specific needs of insects into policy to mitigate the declines mentioned above. We propose several areas of improvement. Firstly, evaluating the extinction risk of more Neotropical insects to better target at-risk species with species-specific policies and conserve their habitats within area-based interventions. Secondly, alternative pest control methods and enhanced monitoring of insects in a range of land-based production sectors. Thirdly, incorporating measurable and achievable insect conservation targets into international policies and conventions. Finally, we emphasise the important roles of community engagement and enhanced public awareness in achieving these improvements to insect conservation policies.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Insetos , Políticas
20.
Ecol Evol ; 12(9): e9283, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110887

RESUMO

Chinese sericulture relies in part on the rearing of the Chinese oak silkmoth Antheraea pernyi, an insect with key cultural and ecological roles. While feeding primarily on oak, Antheraea species are known to accept alternative hosts such as birch Betula sp with little to no apparent negative fitness consequences. This opens up the range of hostplants that could be used for large-scale rearing of A. pernyi for silk production and food, or used by this species in possible invasions. To date, however, the natural history and ecology of A. pernyi remain subject of investigation. For instance, we still do not know how individuals respond to crowding developmental environments, which is an important factor to consider for the ecology of the species as well as for commercial rearing. Here, I describe the implications of larval crowding to the survival and growth of A. pernyi larvae during early development. I show that higher crowding is associated with stronger negative effects on growth and survival, corroborating findings from other holometabolous insects. I then discuss the implications of this findings for our understanding of optimum larval crowding. Overall, the findings reveal important ecological information for an insect species key for provisioning and cultural ecosystem services.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA