Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(17): 3548-3557, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37595564

RESUMO

A human embryo's legal definition and its entitlement to protection vary greatly worldwide. Recently, human pluripotent stem cells have been used to form in vitro models of early embryos that have challenged legal definitions and raised questions regarding their usage. In this light, we propose a refined legal definition of an embryo, suggest "tipping points" for when human embryo models could eventually be afforded similar protection to that of embryos, and then revisit basic ethical principles that might help to draft a roadmap for the gradual, justified usage of embryo models in a manner that aims to maximize benefits to society.


Assuntos
Pesquisas com Embriões , Embrião de Mamíferos , Humanos , Células-Tronco Pluripotentes , Pesquisas com Embriões/ética
2.
Nature ; 614(7948): 509-520, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543322

RESUMO

The segmented body plan of vertebrates is established during somitogenesis, a well-studied process in model organisms; however, the details of this process in humans remain largely unknown owing to ethical and technical limitations. Despite recent advances with pluripotent stem cell-based approaches1-5, models that robustly recapitulate human somitogenesis in both space and time remain scarce. Here we introduce a pluripotent stem cell-derived mesoderm-based 3D model of human segmentation and somitogenesis-which we termed 'axioloid'-that captures accurately the oscillatory dynamics of the segmentation clock and the morphological and molecular characteristics of sequential somite formation in vitro. Axioloids show proper rostrocaudal patterning of forming segments and robust anterior-posterior FGF-WNT signalling gradients and retinoic acid signalling components. We identify an unexpected critical role of retinoic acid signalling in the stabilization of forming segments, indicating distinct, but also synergistic effects of retinoic acid and extracellular matrix on the formation and epithelialization of somites. Comparative analysis demonstrates marked similarities of axioloids to the human embryo, further validated by the presence of a Hox code in axioloids. Finally, we demonstrate the utility of axioloids for studying the pathogenesis of human congenital spine diseases using induced pluripotent stem cells with mutations in HES7 and MESP2. Our results indicate that axioloids represent a promising platform for the study of axial development and disease in humans.


Assuntos
Padronização Corporal , Técnicas de Cultura de Células em Três Dimensões , Somitos , Humanos , Padronização Corporal/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas In Vitro , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Modelos Biológicos , Mutação , Somitos/citologia , Somitos/efeitos dos fármacos , Somitos/embriologia , Somitos/metabolismo , Doenças da Coluna Vertebral/patologia , Tretinoína/metabolismo , Tretinoína/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos
3.
Development ; 150(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37260362

RESUMO

Recent years have seen exciting progress across human embryo research, including new methods for culturing embryos, transcriptional profiling of embryogenesis and gastrulation, mapping lineage trajectories, and experimenting on stem cell-based embryo models. These advances are beginning to define the dynamical principles of development across stages, tissues and organs, enabling a better understanding of human development before birth in health and disease, and potentially leading to improved treatments for infertility and developmental disorders. However, there are still significant roadblocks en route to this goal. Here, we highlight technical challenges to studying early human development and propose ways and means to overcome some of these constraints.


Assuntos
Desenvolvimento Embrionário , Gastrulação , Humanos , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Células-Tronco
4.
Development ; 150(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37526602

RESUMO

Primordial germ cells (PGCs) are the early embryonic precursors of gametes - sperm and egg cells. PGC-like cells (PGCLCs) can currently be derived in vitro from pluripotent cells exposed to signalling cocktails and aggregated into large embryonic bodies, but these do not recapitulate the native embryonic environment during PGC formation. Here, we show that mouse gastruloids, a three-dimensional in vitro model of gastrulation, contain a population of gastruloid-derived PGCLCs (Gld-PGCLCs) that resemble early PGCs in vivo. Importantly, the conserved organisation of mouse gastruloids leads to coordinated spatial and temporal localisation of Gld-PGCLCs relative to surrounding somatic cells, even in the absence of specific exogenous PGC-specific signalling or extra-embryonic tissues. In gastruloids, self-organised interactions between cells and tissues, including the endodermal epithelium, enables the specification and subsequent maturation of a pool of Gld-PGCLCs. As such, mouse gastruloids represent a new source of PGCLCs in vitro and, owing to their inherent co-development, serve as a novel model to study the dynamics of PGC development within integrated tissue environments.


Assuntos
Células Germinativas , Sêmen , Masculino , Camundongos , Animais , Endoderma , Células Cultivadas , Transdução de Sinais , Diferenciação Celular/genética
5.
Nature ; 582(7812): 410-415, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32528178

RESUMO

The body plan of the mammalian embryo is shaped through the process of gastrulation, an early developmental event that transforms an isotropic group of cells into an ensemble of tissues that is ordered with reference to three orthogonal axes1. Although model organisms have provided much insight into this process, we know very little about gastrulation in humans, owing to the difficulty of obtaining embryos at such early stages of development and the ethical and technical restrictions that limit the feasibility of observing gastrulation ex vivo2. Here we show that human embryonic stem cells can be used to generate gastruloids-three-dimensional multicellular aggregates that differentiate to form derivatives of the three germ layers organized spatiotemporally, without additional extra-embryonic tissues. Human gastruloids undergo elongation along an anteroposterior axis, and we use spatial transcriptomics to show that they exhibit patterned gene expression. This includes a signature of somitogenesis that suggests that 72-h human gastruloids show some features of Carnegie-stage-9 embryos3. Our study represents an experimentally tractable model system to reveal and examine human-specific regulatory processes that occur during axial organization in early development.


Assuntos
Padronização Corporal , Gástrula/citologia , Células-Tronco Embrionárias Humanas/citologia , Organoides/citologia , Organoides/embriologia , Somitos/citologia , Somitos/embriologia , Padronização Corporal/genética , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Técnicas In Vitro , Organoides/metabolismo , Transdução de Sinais , Somitos/metabolismo , Transcriptoma
7.
Nature ; 582(7812): 405-409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32076263

RESUMO

Gastruloids are three-dimensional aggregates of embryonic stem cells that display key features of mammalian development after implantation, including germ-layer specification and axial organization1-3. To date, the expression pattern of only a small number of genes in gastruloids has been explored with microscopy, and the extent to which genome-wide expression patterns in gastruloids mimic those in embryos is unclear. Here we compare mouse gastruloids with mouse embryos using single-cell RNA sequencing and spatial transcriptomics. We identify various embryonic cell types that were not previously known to be present in gastruloids, and show that key regulators of somitogenesis are expressed similarly between embryos and gastruloids. Using live imaging, we show that the somitogenesis clock is active in gastruloids and has dynamics that resemble those in vivo. Because gastruloids can be grown in large quantities, we performed a small screen that revealed how reduced FGF signalling induces a short-tail phenotype in embryos. Finally, we demonstrate that embedding in Matrigel induces gastruloids to generate somites with the correct rostral-caudal patterning, which appear sequentially in an anterior-to-posterior direction over time. This study thus shows the power of gastruloids as a model system for exploring development and somitogenesis in vitro in a high-throughput manner.


Assuntos
Gástrula , Células-Tronco Embrionárias Murinas/citologia , Organoides/citologia , Organoides/embriologia , Análise de Célula Única , Somitos/citologia , Somitos/embriologia , Transcriptoma , Animais , Colágeno , Combinação de Medicamentos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Feminino , Gástrula/citologia , Gástrula/embriologia , Gástrula/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Laminina , Masculino , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Proteoglicanas , RNA-Seq , Somitos/metabolismo , Fatores de Tempo
8.
Development ; 148(23)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34854891

RESUMO

Primordial germ cells (PGCs) form early in embryo development and are crucial precursors to functioning gamete cells. Considerable research has focussed on identifying the transcriptional characteristics and signalling pathway requirements that confer PGC specification and development, enabling the derivation of PGC-like cells (PGCLCs) in vitro using specific signalling cocktails. However, full maturation to germ cells still relies on co-culture with supporting cell types, implicating an additional requirement for cellular- and tissue-level regulation. Here, we discuss the experimental evidence that highlights the nature of intercellular interactions between PGCs and neighbouring cell populations during mouse PGC development. We posit that the role that tissue interactions play on PGCs is not limited solely to signalling-based induction but extends to coordination of development by robust regulation of the proportions and position of the cells and tissues within the embryo, which is crucial for functional germ cell maturation. Such tissue co-development provides a dynamic, contextual niche for PGC development. We argue that there is evidence for a clear role for inter-tissue dependence of mouse PGCs, with potential implications for generating mammalian PGCLCs in vitro.


Assuntos
Comunicação Celular , Diferenciação Celular , Embrião de Mamíferos/embriologia , Células Germinativas/metabolismo , Transdução de Sinais , Animais , Humanos
9.
Cells Tissues Organs ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38479364

RESUMO

BACKGROUND: Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, open new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organised spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY: While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate, and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE: This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general, and in particular to address open questions in PGC development and gametogenesis.

10.
Nature ; 622(7983): 469-470, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37848524
11.
Nature ; 562(7726): 272-276, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30283134

RESUMO

The emergence of multiple axes is an essential element in the establishment of the mammalian body plan. This process takes place shortly after implantation of the embryo within the uterus and relies on the activity of gene regulatory networks that coordinate transcription in space and time. Whereas genetic approaches have revealed important aspects of these processes1, a mechanistic understanding is hampered by the poor experimental accessibility of early post-implantation stages. Here we show that small aggregates of mouse embryonic stem cells (ESCs), when stimulated to undergo gastrulation-like events and elongation in vitro, can organize a post-occipital pattern of neural, mesodermal and endodermal derivatives that mimic embryonic spatial and temporal gene expression. The establishment of the three major body axes in these 'gastruloids'2,3 suggests that the mechanisms involved are interdependent. Specifically, gastruloids display the hallmarks of axial gene regulatory systems as exemplified by the implementation of collinear Hox transcriptional patterns along an extending antero-posterior axis. These results reveal an unanticipated self-organizing capacity of aggregated ESCs and suggest that gastruloids could be used as a complementary system to study early developmental events in the mammalian embryo.


Assuntos
Padronização Corporal , Gástrula/citologia , Gástrula/embriologia , Células-Tronco Embrionárias Murinas/citologia , Organoides/citologia , Organoides/embriologia , Animais , Padronização Corporal/genética , Gástrula/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Técnicas In Vitro , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Organoides/metabolismo , Fatores de Tempo
12.
Dev Biol ; 488: 35-46, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35537519

RESUMO

Gastrulation is a fundamental and critical process of animal development whereby the mass of cells that results from the proliferation of the zygote transforms itself into a recognizable outline of an organism. The last few years have seen the emergence of a number of experimental models of early mammalian embryogenesis based on Embryonic Stem (ES) cells. One of this is the Gastruloid model. Gastruloids are aggregates of defined numbers of ES cells that, under defined culture conditions, undergo controlled proliferation, symmetry breaking, and the specification of all three germ layers characteristic of vertebrate embryos, and their derivatives. However, they lack brain structures and, surprisingly, reveal a disconnect between cell type specific gene expression and tissue morphogenesis, for example during somitogenesis. Gastruloids have been derived from mouse and human ES cells and several variations of the original model have emerged that reveal a hereto unknown modularity of mammalian embryos. We discuss the organization and development of gastruloids in the context of the embryonic stages that they represent, pointing out similarities and differences between the two. We also point out their potential as a reproducible, scalable and searchable experimental system and highlight some questions posed by the current menagerie of gastruloids.


Assuntos
Gastrulação , Células-Tronco Embrionárias Humanas , Animais , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Camadas Germinativas , Humanos , Mamíferos , Camundongos
13.
Dev Biol ; 474: 100-108, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33484705

RESUMO

Technical and ethical limitations create a challenge to study early human development, especially following the first 3 weeks of development after fertilization, when the fundamental aspects of the body plan are established through the process called gastrulation. As a consequence, our current understanding of human development is mostly based on the anatomical and histological studies on Carnegie Collection of human embryos, which were carried out more than half a century ago. Due to the 14-day rule on human embryo research, there have been no experimental studies beyond the fourteenth day of human development. Mutagenesis studies on animal models, mostly in mouse, are often extrapolated to human embryos to understand the transcriptional regulation of human development. However, due to the existence of significant differences in their morphological and molecular features as well as the time scale of their development, it is obvious that complete knowledge of human development can be achieved only by studying the human embryo. These studies require a cellular framework. Here we summarize the cellular, molecular, and temporal aspects associated with human gastrulation and discuss how they relate to existing human PSCs based models of early development.


Assuntos
Embrião de Mamíferos/metabolismo , Gastrulação , Animais , Padronização Corporal , Embrião de Mamíferos/citologia , Humanos , Modelos Animais
14.
Nat Rev Genet ; 17(11): 693-703, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27616569

RESUMO

Waddington's epigenetic landscape is an abstract metaphor frequently used to represent the relationship between gene activity and cell fates during development. Over the past few years, it has become a useful framework for interpreting results from single-cell transcriptomics experiments. It has led to the proposal that, during fate transitions, cells experience smooth, continuous progressions of global transcriptional activity, which can be captured by (pseudo)temporal dynamics. Here, focusing strictly on the fate decision events, we suggest an alternative view: that fate transitions occur in a discontinuous, stochastic manner whereby signals modulate the probability of the transition events.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Biologia Computacional/métodos , Epigênese Genética/genética , Animais , Humanos , Modelos Genéticos , Processos Estocásticos
17.
Stem Cells ; 36(12): 1828-1838, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30270482

RESUMO

Cell fate transitions in mammalian stem cell systems have often been associated with transcriptional heterogeneity; however, existing data have failed to establish a functional or mechanistic link between the two phenomena. Experiments in unicellular organisms support the notion that transcriptional heterogeneity can be used to facilitate adaptability to environmental changes and have identified conserved chromatin-associated factors that modulate levels of transcriptional noise. Herein, we show destabilization of pluripotency-associated gene regulatory networks through increased transcriptional heterogeneity of mouse embryonic stem cells in which paradigmatic histone acetyl-transferase, and candidate noise modulator, Kat2a (yeast orthologue Gcn5), have been inhibited. Functionally, network destabilization associates with reduced pluripotency and accelerated mesendodermal differentiation, with increased probability of transitions into lineage commitment. Thus, we show evidence of a relationship between transcriptional heterogeneity and cell fate transitions through manipulation of the histone acetylation landscape of mouse embryonic stem cells, suggesting a general principle that could be exploited in other normal and malignant stem cell fate transitions. Stem Cells 2018;36:1828-11.


Assuntos
Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Células-Tronco Pluripotentes/fisiologia , Animais , Diferenciação Celular , Heterogeneidade Genética , Humanos , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo
18.
Nat Commun ; 15(1): 1463, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368410

RESUMO

Many amniote vertebrate species including humans can form identical twins from a single embryo, but this only occurs rarely. It has been suggested that the primitive-streak-forming embryonic region emits signals that inhibit streak formation elsewhere but the signals involved, how they are transmitted and how they act has not been elucidated. Here we show that short tracks of calcium firing activity propagate through extraembryonic tissue via gap junctions and prevent ectopic primitive streak formation in chick embryos. Cross-regulation of calcium activity and an inhibitor of primitive streak formation (Bone Morphogenetic Protein, BMP) via NF-κB and NFAT establishes a long-range BMP gradient spanning the embryo. This mechanism explains how embryos of widely different sizes can maintain positional information that determines embryo polarity. We provide evidence for similar mechanisms in two different human embryo models and in Drosophila, suggesting an ancient evolutionary origin.


Assuntos
Proteínas Morfogenéticas Ósseas , Cálcio , Animais , Embrião de Galinha , Humanos , Cálcio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Gastrulação/fisiologia , Linha Primitiva , Reprodução
19.
Stem Cell Reports ; 16(5): 1021-1030, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33979591

RESUMO

In recent years, a diverse array of in vitro cell-derived models of mammalian development have been described that hold immense potential for exploring fundamental questions in developmental biology, particularly in the case of the human embryo where ethical and technical limitations restrict research. These models open up new avenues toward biomedical advances in in vitro fertilization, clinical research, and drug screening with potential to impact wider society across many diverse fields. These technologies raise challenging questions with profound ethical, regulatory, and social implications that deserve due consideration. Here, we discuss the potential impacts of embryo-like models, and their biomedical potential and current limitations.


Assuntos
Pesquisa Biomédica , Embrião de Mamíferos/fisiologia , Mamíferos/embriologia , Modelos Biológicos , Sociedades , Animais , Descoberta de Drogas , Humanos
20.
Reprod Toxicol ; 105: 72-90, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34425190

RESUMO

Pharmaceuticals intended for use in patients of childbearing potential need to be tested for teratogenicity before marketing. Several pharmaceutical companies use animal-free in vitro models which allow a more rapid selection of lead compounds and contribute to 3Rs principles ('replace, reduce and refine') by streamlining the selection of promising compounds submitted to further regulatory studies in animals. Currently available in vitro models typically rely on adherent monolayer cultures or disorganized 3D structures, both of which lack the spatiotemporal and morphological context of the developing embryo. A newly developed 3D 'gastruloid' model has the potential to achieve a more reliable prediction of teratogenicity by providing a robust recapitulation of gastrulation-like events alongside morphological coordination at relatively high-throughput. In this first proof-of-concept study, we used both mouse and human gastruloids to examine a panel of seven reference compounds, with associated in vivo data and known teratogenic risk, to quantitatively assess in vitro teratogenicity. We observed several gross morphological effects, including significantly reduced elongation or decreased size of the gastruloids, upon exposure to several of the reference compounds. We also observed aberrant gene expression using fluorescent reporters, including SOX2, BRA, and SOX17, suggestive of multi-lineage differentiation defects and disrupted axial patterning. Finally, we saw that gastruloids recapitulated some of the known in vivo species-specific susceptibilities between their mouse and human counterparts. We therefore suggest that gastruloids represent a powerful tool for teratogenicity assessment by enabling relevant physiological recapitulation of early embryonic development, demonstrating their use as a novel in vitro teratogenic model system.


Assuntos
Gástrula/efeitos dos fármacos , Organoides/efeitos dos fármacos , Teratogênicos/toxicidade , Animais , Células Cultivadas , Embrião de Mamíferos , Gastrulação , Células-Tronco Embrionárias Humanas , Humanos , Camundongos , Células-Tronco Embrionárias Murinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA