Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 34(39)2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37321201

RESUMO

Convolutions are one of the most critical signal and image processing operations. From spectral analysis to computer vision, convolutional filtering is often related to spatial information processing involving neighbourhood operations. As convolution operations are based around the product of two functions, vectors or matrices, dot products play a key role in the performance of such operations; for example, advanced image processing techniques require fast, dense matrix multiplications that typically take more than 90% of the computational capacity dedicated to solving convolutional neural networks. Silicon photonics has been demonstrated to be an ideal candidate to accelerate information processing involving parallel matrix multiplications. In this work, we experimentally demonstrate a multiwavelength approach with fully integrated modulators, tunable filters as microring resonator weight banks, and a balanced detector to perform matrix multiplications for image convolution operations. We develop a scattering matrix model that matches the experiment to simulate large-scale versions of these photonic systems with which we predict performance and physical constraints, including inter-channel cross-talk and bit resolution.

2.
Nanophotonics ; 11(17): 4017-4025, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36081448

RESUMO

A mechanism for self-pulsation in a proposed graphene-on-silicon microring device is studied. The relevant nonlinear effects of two photon absorption, Kerr effect, saturable absorption, free carrier absorption, and dispersion are included in a coupled mode theory framework. We look at the electrical tunability of absorption and the Kerr effect in graphene. We show that the microring can switch from a stable rest state to a self-pulsation state by electrically tuning the graphene under constant illumination. This switching is indicative of a supercritical Hopf bifurcation since the frequency of the pulses is approximately constant at 7 GHz and the amplitudes initial grow with increasing Fermi level. The CMOS compatibility of graphene and the opto-electronic mechanism allows this to device to be fairly easily integrated with other silicon photonic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA