Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 32(23-24): 1499-1513, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30463903

RESUMO

In cells lacking telomerase, telomeres gradually shorten during each cell division to reach a critically short length, permanently activate the DNA damage checkpoint, and trigger replicative senescence. The increase in genome instability that occurs as a consequence may contribute to the early steps of tumorigenesis. However, because of the low frequency of mutations and the heterogeneity of telomere-induced senescence, the timing and mechanisms of genome instability increase remain elusive. Here, to capture early mutation events during replicative senescence, we used a combined microfluidic-based approach and live-cell imaging in yeast. We analyzed DNA damage checkpoint activation in consecutive cell divisions of individual cell lineages in telomerase-negative yeast cells and observed that prolonged checkpoint arrests occurred frequently in telomerase-negative lineages. Cells relied on the adaptation to the DNA damage pathway to bypass the prolonged checkpoint arrests, allowing further cell divisions despite the presence of unrepaired DNA damage. We demonstrate that the adaptation pathway is a major contributor to the genome instability induced during replicative senescence. Therefore, adaptation plays a critical role in shaping the dynamics of genome instability during replicative senescence.


Assuntos
Adaptação Fisiológica/genética , Pontos de Checagem do Ciclo Celular/genética , Dano ao DNA/genética , Instabilidade Genômica/genética , Saccharomyces cerevisiae/genética , Reparo do DNA , Genoma Fúngico/genética , Técnicas Analíticas Microfluídicas , Mutação , Imagem Óptica , Saccharomyces cerevisiae/enzimologia , Telomerase/genética
2.
Haematologica ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299578

RESUMO

The primary and pre-specified updated analyses of ICARIA-MM (NCT02990338) demonstrated improved progression-free survival and a benefit in overall survival (OS) was reported with the addition of isatuximab, an anti-CD38 monoclonal antibody, to pomalidomide-dexamethasone (Pd) in patients with relapsed/refractory multiple myeloma. Here, we report the final OS analysis. This multicenter, randomized, open-label, phase 3 study included patients who had received and failed ≥2 previous therapies, including lenalidomide and a proteasome inhibitor. Between January 10, 2017, and February 2, 2018, 307 patients were randomized (1:1) to isatuximab-pomalidomide- dexamethasone (Isa-Pd; n = 154) or Pd (n = 153), stratified based on age (3). At data cutoff for the final OS analysis after 220 OS events (January 27, 2022), median follow-up duration was 52.4 months. Median OS (95% confidence interval) was 24.6 months (20.3-31.3 months) with Isa-Pd and 17.7 months (14.4-26.2 months) with Pd (hazard ratio = 0.78; 95% CI, 0.59-1.02; 1-sided P = 0.0319). Despite subsequent daratumumab use in the Pd group and its potential benefit on PFS in the first subsequent therapy line, median PFS2 was significantly longer with Isa-Pd vs. Pd (17.5 vs. 12.9 months; log-rank 1-sided P = 0.0091). In this analysis, Isa-Pd continued to be efficacious and well tolerated after follow-up of approximately 52 months, contributing to a clinically meaningful, 6.9-month improvement in median overall survival in patients with relapsed/refractory multiple myeloma.

4.
BMC Cancer ; 18(1): 964, 2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30305059

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) gene alterations and amplification are frequently reported in cases of glioblastoma (GBM). However, EGFR-activating mutations that confer proven sensitivity to tyrosine kinase inhibitors (TKIs) in lung cancer have not yet been reported in GBM. CASE PRESENTATION: Using next-generation sequencing, array comparative genomic hybridization and droplet digital PCR, we identified the p.L861Q EGFR mutation in a case of GBM for the first time. The mutation was associated with gene amplification. L861Q may be a clinically valuable mutation because it is known to sensitize non-small-cell lung cancers to treatment with the second-generation EGFR TKI afatinib in particular. Furthermore, we used slice culture of the patient's GBM explant to evaluate the tumour's sensitivity to various EGFR-targeting drugs. Our results suggested that the tumour was not intrinsically sensitive to these drugs. CONCLUSIONS: Our results highlight (i) the value of comprehensive genomic analyses for identifying patient-specific, targetable alterations, and (ii) the need to combine genomic analyses with functional assays, such as tumour-derived slice cultures.


Assuntos
Neoplasias Encefálicas , Receptores ErbB/genética , Glioblastoma , Mutação , Idoso , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Hibridização Genômica Comparativa , Ativação Enzimática/genética , Receptores ErbB/antagonistas & inibidores , Feminino , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Reação em Cadeia da Polimerase , Inibidores de Proteínas Quinases/farmacologia , Análise de Sequência de DNA , Células Tumorais Cultivadas
5.
J Neuropathol Exp Neurol ; 81(11): 873-884, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35984315

RESUMO

Rosette-forming glioneuronal tumors (RGNT) are rare low-grade primary central nervous system (CNS) tumors. The methylation class (MC) RGNT (MC-RGNT) delineates RGNT from other neurocytic CNS tumors with similar histological features. We performed a comprehensive molecular analysis including whole-exome sequencing, RNAseq, and methylome on 9 tumors with similar histology, focusing on the immune microenvironment and cell of origin of RGNT. Three RGNT in this cohort were plotted within the MC-RGNT and characterized by FGFR1 mutation plus PIK3CA or NF1 mutations. RNAseq analysis, validated by immunohistochemistry, identified 2 transcriptomic groups with distinct immune microenvironments. The "cold" group was distinguishable by a low immune infiltration and included the 3 MC-RGNT and 1 MC-pilocytic astrocytoma; the "hot" group included other tumors with a rich immune infiltration. Gene set enrichment analysis showed that the "cold" group had upregulated NOTCH pathway and mainly oligodendrocyte precursor cell and neuronal phenotypes, while the "hot" group exhibited predominantly astrocytic and neural stem cell phenotypes. In silico deconvolution identified the cerebellar granule cell lineage as a putative cell of origin of RGNT. Our study identified distinct tumor biology and immune microenvironments as key features relevant to the pathogenesis and management of RGNT.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias do Sistema Nervoso Central , Neoplasias do Ventrículo Cerebral , Neoplasias Neuroepiteliomatosas , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Neuroepiteliomatosas/patologia , Neoplasias do Sistema Nervoso Central/genética , Classe I de Fosfatidilinositol 3-Quinases , Neoplasias do Ventrículo Cerebral/patologia , Microambiente Tumoral
6.
Biosci Rep ; 39(9)2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31467175

RESUMO

The tumor microenvironment is an important determinant of glioblastoma (GBM) progression and response to treatment. How oncogenic signaling in GBM cells modulates the composition of the tumor microenvironment and its activation is unclear. We aimed to explore the potential local immunoregulatory function of ERK1/2 signaling in GBM. Using proteomic and transcriptomic data (RNA seq) available for GBM tumors from The Cancer Genome Atlas (TCGA), we show that GBM with high levels of phosphorylated ERK1/2 have increased infiltration of tumor-associated macrophages (TAM) with a non-inflammatory M2 polarization. Using three human GBM cell lines in culture, we confirmed the existence of ERK1/2-dependent regulation of the production of the macrophage chemoattractant CCL2/MCP1. In contrast with this positive regulation of TAM recruitment, we found no evidence of a direct effect of ERK1/2 signaling on two other important aspects of TAM regulation by GBM cells: (1) the expression of the immune checkpoint ligands PD-L1 and PD-L2, expressed at high mRNA levels in GBM compared with other solid tumors; (2) the production of the tumor metabolite lactate recently reported to dampen tumor immunity by interacting with the receptor GPR65 present on the surface of TAM. Taken together, our observations suggest that ERK1/2 signaling regulates the recruitment of TAM in the GBM microenvironment. These findings highlight some potentially important particularities of the immune microenvironment in GBM and could provide an explanation for the recent observation that GBM with activated ERK1/2 signaling may respond better to anti-PD1 therapeutics.


Assuntos
Glioblastoma/imunologia , Macrófagos/imunologia , Proteômica , Transcriptoma/genética , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Quimiocina CCL2/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/patologia , Proteína 2 Ligante de Morte Celular Programada 1/genética , Receptores Acoplados a Proteínas G/genética , Microambiente Tumoral/imunologia
7.
Expert Rev Neurother ; 18(9): 729-737, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099909

RESUMO

INTRODUCTION: Glioblastoma (GBM) is the deadliest primary malignant central nervous system (CNS) tumor with a median overall survival of 15 months despite a very intensive therapeutic regimen including maximal safe surgery, radiotherapy, and chemotherapy. Therefore, GBM treatment still raises major biological and therapeutic challenges. Areas covered: One of the hallmarks of the GBM is its tumor microenvironment including tumor-associated macrophages (TAM). TAM, accounting for approximately 30% of the GBM bulk cell population, may explain, at least in part, the immunosuppressive features of GBMs. The TAM are active and highly plastic immune cells and include two major ontogenetically different cell populations: (i) microglia and, (ii) monocytes-derived macrophages (MDM). TAM recruited to the tumor bulk can be reprogramed by GBM cells resulting in an ineffective anti-tumor response. Interestingly, interactions between TAM and GBM cells promote tumor oncogenesis (i.e. tumor cells proliferation and migration/invasion). This review aims to explore TAM targeting in GBM as a promising therapeutic option in the near future. Expert Commentary: A better understanding of TAM-GBM interactions and dynamics will certainly uncover new anti-GBM therapeutic avenues.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Macrófagos/patologia , Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Humanos , Microglia/patologia
8.
Anticancer Res ; 38(3): 1343-1352, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29491058

RESUMO

BACKGROUND/AIM: The squamous cell carcinoma antigen (SCCA), encoded by the genes SERPINB3/B4, is a tumour marker produced by head and neck squamous cell carcinoma (HNSCC). We aimed to examine SERPINB3/B4 mRNA levels and its clinical significance in the therapeutic context. MATERIALS AND METHODS: We retrieved mRNA expression levels, clinical, pathological and genomic data for 520 HNSCC from The Cancer Genome Atlas (TCGA). RESULTS: HNSCC tumours express high levels of SERPINB3/B4 mRNA. SERPINB3 expression differs depending on Human papillomavirus (HPV) infection status, primary tumour location, grade and differentiation, extension to lymph nodes and extracapsular spread. Interestingly, we observed an association between SERPINB3/B4 and the presence of tumour immune infiltrate as well as the expression of the immune checkpoint regulators PD-L1/PD-L2 that depended on HPV status. CONCLUSION: Our findings point to potential interest of SERPINB3/B4 for the stratification of HNSCC patients in the therapeutic context.


Assuntos
Antígenos de Neoplasias/genética , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Serpinas/genética , Carcinoma de Células Escamosas/classificação , Carcinoma de Células Escamosas/diagnóstico , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Neoplasias de Cabeça e Pescoço/classificação , Neoplasias de Cabeça e Pescoço/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/virologia
9.
Med Sci (Paris) ; 33(12): 1055-1062, 2017 Dec.
Artigo em Francês | MEDLINE | ID: mdl-29261493

RESUMO

Recent progress in biology has made the study of the medical treatment of cancer more effective, but it has also revealed the large complexity of carcinogenesis and cell signaling. For many types of cancer, several therapeutic targets are known and in some cases drugs against these targets exist. Unfortunately, the target proteins often work in networks, resulting in functional adaptation and the development of resilience/resistance to medical treatment. The use of mathematical modeling makes it possible to carry out system-level analyses for improved study of therapeutic targeting in solid tumours. We present the main types of mathematical models used in cancer research and we provide examples illustrating the relevance of these approaches in molecular oncobiology.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Teóricos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos
10.
J Cancer ; 8(8): 1417-1424, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28638456

RESUMO

Background. New approaches are needed for patients newly diagnosed with bulky glioblastoma (GB) and/or with severe neurological impairment that cannot benefit from first line temozolomide (TMZ)-based chemoradiotherapy. Bevacizumab (BEV), an antiangiogenic anti-VEGF-R monoclonal antibody, has a rapid impact on tumor-related brain edema in recurrent GB. The present study reports the feasibility and efficacy of an induction treatment with TMZ and BEV to alleviate the initial neurological impairment and/or to reduce the tumor volume before a delayed chemoradiotherapy. Methods. We retrospectively analyzed tumor and target volumes and clinical neurological status in 39 patients with bulky GB and/or with severe neurological impairment after an induction treatment combining TMZ and BEV. Neurological and radiological responses were assessed according to RANO criteria. Calculating gross tumor and clinical target volumes (GTV and CTV) was done at diagnosis and before radiotherapy. Progression-free survival (PFS) and overall survival (OS) were determined by Kaplan Meier methods. Safety was reported according to NCTCAE. Results. A cohort of 39 patients was analyzed between December 2010 and April 2014. Upfront standard TMZ-based chemoradiotherapy was recused due either to tumor volume or impairment of neurological status and/or performance status. After TMZ/BEV induction (median time of 3 months), 6 (15%) patients achieved a partial response (PR), and 17 (44%) had a stable disease. 24 patients (62%) received a radical-intent chemoradiotherapy. TMZ-BEV induced median reduction of the clinical target volume (CTV) was 25.9% [-84.4%; - 4.8%]. The median PFS and OS were 8.4 months [95% CI: (6.6 - 9.9)] and 11.0 months [95% CI: (9.3 - 13.7)], respectively in the whole cohort and 10.8 [95% CI: (9.3 - 12.9)] and 15.0 [95% CI: (13.2 - 17.8)] for irradiated patients. Induction treatment led to corticosteroid dose reduction or cessation in 21 patients (54%). KPS improvement was observed in 38% of patients. Toxicity was mild with only 7/39 (18%) grade III-IV toxicity, including 1 digestive bleeding and 1 epistaxis. Conclusion. TMZ-BEV induction led to CTV reduction allowing for optimal chemoradiotherapy in a majority (62%) of patients for which radiotherapy was initially recused. A clinical benefit was obtained with improved KPS and a decrease in steroid dose.

11.
Case Rep Oncol ; 9(2): 470-473, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27721770

RESUMO

Cancer-related thrombotic microangiopathy (TMA) is a rare entity whose clinical and biological characteristics have been described in various tumors. Here we describe the first case of cancer-related TMA revealing diffuse bone metastases from an ethmoid sinus carcinoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA