Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cerebellum ; 22(4): 663-679, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781609

RESUMO

Proprioceptive sensory information from muscle spindles is essential for the regulation of motor functions. However, little is known about the motor control regions in the cerebellar cortex that receive proprioceptive signals from muscle spindles distributed throughout the body, including the orofacial muscles. Therefore, in this study, we investigated the pattern of projections in the rat cerebellar cortex derived from the supratrigeminal nucleus (Su5), which conveys orofacial proprioceptive information from jaw-closing muscle spindles (JCMSs). Injections of an anterograde tracer into the Su5 revealed that many bilateral axon terminals (rosettes) were distributed in the granular layer of the cerebellar cortex (including the simple lobule B, crus II and flocculus) in a various sized, multiple patchy pattern. We could also detect JCMS proprioceptive signals in these cerebellar cortical regions, revealing for the first time that they receive muscle proprioceptive inputs in rats. Retrograde tracer injections confirmed that the Su5 directly sends outputs to the cerebellar cortical areas. Furthermore, we injected an anterograde tracer into the external cuneate nucleus (ECu), which receives proprioceptive signals from the forelimb and neck muscle spindles, to distinguish between the Su5- and ECu-derived projections in the cerebellar cortex. The labeled terminals from the ECu were distributed predominantly in the vermis of the cerebellar cortex. Almost no overlap was seen in the terminal distributions of the Su5 and ECu projections. Our findings demonstrate that the rat cerebellar cortex receives orofacial proprioceptive input that is processed differently from the proprioceptive signals from the other regions of the body.


Assuntos
Córtex Cerebelar , Fibras Musgosas Hipocampais , Ratos , Animais , Ratos Wistar , Terminações Pré-Sinápticas
2.
Brain Struct Funct ; 226(4): 1115-1133, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33543335

RESUMO

The oval paracentral nucleus (OPC) was initially isolated from the paracentral nucleus (PC) within the intralaminar thalamic nuclei in rats. We have recently shown that the rat OPC receives proprioceptive inputs from jaw-closing muscle spindles (JCMSs). However, it remains unknown which cortical areas receive thalamic inputs from the OPC, and whether the cortical areas receiving the OPC inputs are distinct from those receiving inputs from the other intralaminar nuclei and sensory thalamic nuclei. To address this issue, we injected an anterograde tracer, biotinylated dextranamine (BDA), into the OPC, which was electrophysiologically identified by recording of proprioceptive inputs from the JCMSs. Many BDA-labeled axonal fibers and terminals from the OPC were ipsilaterally observed in the rostral and rostroventral regions of the primary somatosensory cortex (S1), the rostral region of the secondary somatosensory cortex (S2), and the most rostrocaudal levels of the granular insular cortex (GI). In contrast, a BDA injection into the caudal PC, which was located slightly rostral to the OPC, resulted in ipsilateral labeling of axonal fibers and terminals in the rostrolateral region of the medial agranular cortex and the rostromedial region of the lateral agranular cortex. Furthermore, injections of a retrograde tracer, Fluorogold, into these S1, S2, and GI regions, resulted in preferential labeling of neurons in the ipsilateral OPC among the intralaminar and sensory thalamic nuclei. These findings reveal that the rat OPC has widespread, but strong corticopetal projections, indicating that there exist divergent corticopetal pathways from the intralaminar thalamic nucleus, which process JCMS proprioceptive sensation.


Assuntos
Núcleos Intralaminares do Tálamo , Animais , Córtex Cerebral , Vias Neurais , Propriocepção , Ratos
3.
J Neurosci Res ; 87(5): 1115-22, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19006082

RESUMO

The supratrigeminal region (Vsup) is important for coordination of smooth jaw movement. However, little is known about the synaptic connections of the Vsup premotoneurons with the trigeminal motor neurons. In the present study, we examined axon terminals of Vsup premotoneurons in the contralateral trigeminal motor nucleus (Vmo) by a combination of anterograde tracing with cholera toxin B-horseradish peroxidase (CTB-HRP), postembedding immunohistochemistry for the amino acid transmitters glutamate, GABA, and glycine, and electron microscopy. Tracer injections resulted in anterograde labeling of axon terminals of the Vsup premotoneurons in the motor trigeminal nucleus (Vmo). The labeled boutons in Vmo exhibited immunoreactivity for glutamate, GABA, or glycine: glutamate-immunopositive boutons (69%) were more frequently observed than GABA- or glycine-immunopositive boutons (19% and 12%, respectively). Although most labeled boutons (97%) made synaptic contacts with a single postsynaptic dendrite, a few glutamate-immunopositive boutons (3%) showed synaptic contact with two dendrites. No labeled boutons participated in axoaxonic synaptic contacts. Most labeled boutons (78%) were presynaptic to dendritic shafts, and the remaining 22% were presynaptic to somata or primary dendrites. A large proportion of GABA- or glycine-immunopositive boutons (40%) were presynaptic to somata or primary dendrites, whereas most glutamate-immunopositive boutons (86%) were presynaptic to dendritic shafts. These results indicate that axon terminals of Vsup premotoneurons show simple synaptic connection with Vmo neurons. This may provide the anatomical basis for the neural information processing responsible for jaw movement control.


Assuntos
Ácido Glutâmico/metabolismo , Glicina/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Núcleos do Trigêmeo/ultraestrutura , Ácido gama-Aminobutírico/metabolismo , Animais , Toxina da Cólera/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Imuno-Histoquímica , Masculino , Microinjeções , Microscopia Eletrônica , Terminações Pré-Sinápticas/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos do Trigêmeo/metabolismo
4.
J Comp Neurol ; 506(4): 627-39, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18067147

RESUMO

Trigeminal primary afferents expressing P2X(3) receptor are involved in the transmission of orofacial nociceptive information. However, little is known about their central projection pattern and ultrastructural features within the trigeminal brainstem sensory nuclei (TBSN). Here we use multiple immunofluorescence and electron microscopy to characterize the P2X(3)-immunopositive (+) neurons in the trigeminal ganglion and describe the distribution and synaptic organization of their central terminals within the rat TBSN, including nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc). In the trigeminal ganglion, P2X(3) immunoreactivity was mainly in small and medium-sized somata, but also frequently in large somata. Although most P2X(3) (+) somata costained for the nonpeptidergic marker IB4, few costained for the peptidergic marker substance P. Most P2X(3) (+) fibers in the sensory root of trigeminal ganglion (92.9%) were unmyelinated, whereas the rest were small myelinated. In the TBSN, P2X(3) immunoreactivity was dispersed in the rostral TBSN but was dense in the superficial laminae of Vc, especially in the inner lamina II. The P2X(3) (+) terminals contained numerous clear, round vesicles and sparse large, dense-core vesicles. Typically, they were presynaptic to one or two dendritic shafts and also frequently postsynaptic to axonal endings, containing pleomorphic vesicles. Such P2X(3) (+) terminals, showing glomerular shape and complex synaptic relationships, and those exhibiting axoaxonic contacts, were more frequently seen in Vp than in any other TBSN. These results suggest that orofacial nociceptive information may be transmitted via P2X(3) (+) afferents to all TBSN and that it may be processed differently in different TBSN.


Assuntos
Neurônios Aferentes/metabolismo , Receptores Purinérgicos P2/metabolismo , Gânglio Trigeminal/metabolismo , Nervo Trigêmeo/metabolismo , Núcleos do Trigêmeo/metabolismo , Vias Aferentes/metabolismo , Vias Aferentes/ultraestrutura , Animais , Tamanho Celular , Masculino , Microscopia Imunoeletrônica , Fibras Nervosas Amielínicas/metabolismo , Fibras Nervosas Amielínicas/ultraestrutura , Neurônios Aferentes/ultraestrutura , Nociceptores/metabolismo , Nociceptores/ultraestrutura , Lectinas de Plantas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3 , Substância P/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/ultraestrutura , Gânglio Trigeminal/ultraestrutura , Nervo Trigêmeo/ultraestrutura , Núcleos do Trigêmeo/ultraestrutura
5.
Neuroscience ; 388: 317-329, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30077619

RESUMO

We have recently revealed that the proprioceptive signal from jaw-closing muscle spindles (JCMSs) is conveyed to the dorsal part of granular insular cortex rostroventrally adjacent to the rostralmost part of secondary somatosensory cortex (dGIrvs2) via the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM) in rats. However, it remains unclear to which cortical or subcortical structures the JCMS proprioceptive information is subsequently conveyed from the dGIrvs2. To test this issue, we injected an anterograde tracer, biotinylated dextranamine, into the electophysiologically identified dGIrvs2, and analyzed the resultant distribution profiles of labeled axon terminals in rats. Labeled terminals were distributed with an ipsilateral predominance. In the cerebral cortex, they were seen in the primary and secondary somatosensory cortices, lateral and medial agranular cortices and dorsolateral orbital cortex. In the basal ganglia, they were found in the caudate putamen, core part of accumbens nucleus, lateral globus pallidus, subthalamic nucleus, and substantia nigra pars compacta and pars reticulata. They were also observed in the central amygdaloid nucleus and extended amygdala (the interstitial nucleus of posterior limb of anterior commissure and the juxtacapsular part of lateral division of bed nucleus of stria terminalis). In the thalamus, they were seen in the reticular nucleus, ventromedial nucleus, core VPM, parvicellular part of ventral posterior nucleus, oval paracentral nucleus, medial and triangular parts of posterior nucleus, and zona incerta as well as the VPMcvm. These data suggest that the JCMS proprioceptive information through the dGIrvs2 is transmitted to the emotional 'limbic' regions as well as sensorimotor regions.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Propriocepção/fisiologia , Tonsila do Cerebelo/anatomia & histologia , Tonsila do Cerebelo/fisiologia , Animais , Gânglios da Base/anatomia & histologia , Gânglios da Base/fisiologia , Biotina/análogos & derivados , Dextranos , Potenciais Evocados , Face/inervação , Lateralidade Funcional , Masculino , Boca/inervação , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso , Neurônios/citologia , Neurônios/fisiologia , Ratos Wistar , Tálamo/anatomia & histologia , Tálamo/fisiologia
6.
J Comp Neurol ; 503(6): 779-89, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-17570498

RESUMO

We have previously described the distribution pattern of inhibitory synapses on rat jaw-closing (JC) alpha- and gamma-motoneurons. In the present study, we investigated developmental changes in inhibitory synapses on JC motoneurons. We performed a quantitative ultrastructural analysis of putative inhibitory synaptic boutons on JC motoneuron somata by using postembedding immunogold labeling for GABA and glycine. In total, 206, 350, and 497 boutons contacting JC motoneuron somata were analyzed at postnatal days 2 (P2), 11 (P11) and 31 (P31), respectively. The size of the somata increased significantly during postnatal development. The size distribution was bimodal at P31. Mean length of the boutons and percentage of synaptic covering also increased during postnatal development, whereas bouton density did not differ significantly among the three age groups. Synaptic boutons on the somata of JC alpha-motoneurons could be classified into four types: boutons immunoreactive for 1) GABA only, 2) glycine only, 3) both GABA and glycine, and 4) neither GABA nor glycine. There was no developmental change in the proportion of putative inhibitory boutons to the total number of studied boutons. However, the glycine-only boutons increased significantly (15.1% to 27.3%), and the GABA-only boutons decreased significantly (17.7% to 2.6%) during the period from P11 to P31. Our ultrastructural data indicate that the inhibitory synaptic input to JC motoneurons is developmentally regulated and that there is a postnatal switch from GABA to glycine. The postnatal changes revealed in the present study could play an important role in the maturation of the oral motor system.


Assuntos
Glicina/metabolismo , Arcada Osseodentária/inervação , Neurônios Motores/citologia , Terminações Pré-Sinápticas/ultraestrutura , Nervo Trigêmeo/crescimento & desenvolvimento , Ácido gama-Aminobutírico/metabolismo , Animais , Imuno-Histoquímica , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Ratos , Nervo Trigêmeo/metabolismo
7.
Brain Res ; 1149: 111-7, 2007 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-17407766

RESUMO

This study was performed to complement the results of prior intracellular recording and labeling studies by investigating the general distribution pattern of trigeminal premotoneurons in the cat brainstem using the retrograde tracing methods. The results of the present study reconfirmed the presence of premotoneurons in the trigeminal principal and oral nuclei following horseradish peroxidase injections into the jaw-opening (JO) or jaw-closing (JC) nucleus. Furthermore, we found that labeled cells from the JO nucleus and JC nucleus located in the reticular regions surrounding the trigeminal motor nucleus (Vmo; Vmo shell region) were arranged in a topographic fashion, while those in the parabrachial nucleus, supratrigeminal nucleus, lateral reticular formation caudal to the shell region and raphe nuclei were intermingled with each other. The labeling in the individual nuclei was bilateral with an ipsilateral predominance to each injection site, with the exception of the mesencephalic trigeminal nucleus, where the labeling was ipsilateral to the injection site in the JC nucleus. These results, combined with the data of the previous intracellular tracing studies, indicate that based on the presence of somatotopic organization, premotoneurons can be largely divided into two groups; those projecting to either the JO or the JC nucleus and those projecting to the two nuclei, and we offer the suggestion that roles of premotoneurons for jaw movements differ among the individual nuclei.


Assuntos
Neurônios Motores/citologia , Vias Neurais/citologia , Núcleos do Trigêmeo/citologia , Animais , Gatos
8.
Arch Oral Biol ; 52(4): 321-4, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17174264

RESUMO

This paper reviews recent data on the spatial distribution of inhibitory and excitatory synapses on the dendritic tree of jaw-closing (JC) and -opening (JO) motoneurons in the cat, in which a combination of techniques employing intracellular injections of horseradish peroxidase and postembedding immunogold labelling was used. The dendritic tree is divided into three segments: primary and distal dendrites and intermediate dendrites between the two segments. The proportion of inhibitory boutons (immunoreactive for GABA and/or glycine) is slightly higher than proportion of excitatory boutons (immunoreactive for glutamate) in JC motoneurons, but this trend is reversed in JO motoneurons. In the two kinds of motoneuron, boutons immunoreactive to glycine alone are more numerous than boutons double-labelled to GABA and glycine, which, in turn, occur more frequently than boutons immunoreactive to GABA alone. In JC motoneurons, the packing density (number of boutons per 100 microm(2)) of the inhibitory boutons decreases somatofugally, but this trend is not applicable to the excitatory boutons. In contrast, the packing density of the inhibitory and excitatory boutons in JO motoneurons does not significantly differ among the three dendritic compartments, though it is slightly higher for the excitatory than the inhibitory ones on each dendritic segment. These differences have important implications for synaptic integration in JC and JO motoneurons.


Assuntos
Dendritos/ultraestrutura , Mastigação/fisiologia , Músculos da Mastigação/inervação , Neurônios Motores/ultraestrutura , Sinapses/ultraestrutura , Animais , Gatos , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Músculos da Mastigação/ultraestrutura , Microscopia Imunoeletrônica , Ácido gama-Aminobutírico/metabolismo
9.
J Oral Sci ; 59(2): 177-182, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28637975

RESUMO

Neurons in the trigeminal mesencephalic nucleus (Vmes) receive deep sensation (proprioception) from jaw-closing muscle spindles and periodontal ligaments and project primarily to the jaw-closing motoneuron pool (jaw-closing nucleus) of the trigeminal motor nucleus and to the supratrigeminal nucleus. Numerous articles have described the morphology and physiology of the central projections of Vmes afferents originating from the muscle spindles and periodontal ligaments. However, no report has provided a detailed description of projection and synaptic connectivity, especially of single afferents, and their functional implications. In this review, we reanalyze data obtained by single intra-axonal recording and labeling of functionally identified Vmes muscle spindle afferents and periodontal ligament afferents and by electron microscopic observation of their projection features and synaptic organization of boutons, to compare the data for the jaw-closing nucleus and supratrigeminal nucleus. Our analysis shows that each Vmes afferent type has characteristic projection pattern and synaptic feature that may be important in jaw-reflex control.


Assuntos
Arcada Osseodentária/inervação , Mesencéfalo/fisiologia , Neurônios/fisiologia , Reflexo/fisiologia , Sinapses/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Arcada Osseodentária/fisiologia , Mesencéfalo/citologia
10.
Brain Struct Funct ; 222(6): 2655-2669, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28382578

RESUMO

The ascending pathway mediating proprioception from the orofacial region is still not fully known. The present study elucidated the relay of jaw-closing muscle spindle (JCMS) inputs from brainstem to thalamus in rats. We injected an anterograde tracer into the electrophysiologically identified supratrigeminal nucleus (Su5), known to receive JCMS input. Many thalamic axon terminals were labeled and were found mainly contralaterally in a small, unpredicted area of the caudo-ventromedial edge (VPMcvm) of ventral posteromedial thalamic nucleus (VPM). Electrical stimulation of the masseter nerve and passive jaw movements induced large responses in the VPMcvm. The VPMcvm is far from the rostrodorsal part of ventral posterolateral thalamic nucleus (VPL) where proprioceptive inputs from the body are represented. After injection of a retrograde tracer into the electrophysiologically identified VPMcvm, many neurons were labeled almost exclusively in the contralateral Su5, whereas no labeled neurons were found in the principal sensory trigeminal nucleus (Pr5) and spinal trigeminal nucleus (Sp5). In contrast, after injection of a retrograde tracer into the core of VPM, many neurons were labeled contralaterally in the Pr5 and Sp5, but none in the Su5. We conclude that JCMS input excites trigeminothalamic projection neurons in the Su5 which project primarily to the VPMcvm in marked contrast to other proprioceptors and sensory receptors in the orofacial region which project to the core VPM. These findings suggest that lesions or deep brain stimulation in the human equivalent of VPMcvm may be useful for treatment of movement disorders (e.g., orofacial tremor) without affecting other sensations.


Assuntos
Tronco Encefálico/fisiologia , Músculo Masseter/inervação , Fusos Musculares/fisiologia , Propriocepção , Núcleos Talâmicos/fisiologia , Nervo Trigêmeo/fisiologia , Animais , Mapeamento Encefálico/métodos , Estimulação Elétrica , Eletrocardiografia , Potenciais Evocados , Masculino , Vias Neurais/fisiologia , Técnicas de Rastreamento Neuroanatômico , Ratos Wistar
11.
Pain ; 120(1-2): 53-68, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16359792

RESUMO

Promising recent developments in the therapeutic value of neuropeptide antagonists have generated renewed importance in understanding the functional role of neuropeptides in nociception and inflammation. To explore this relationship we examined behavioral changes and primary afferent neuronal plasticity following deep tissue inflammation. One hour following craniofacial muscle inflammation ipsilateral as well as contralateral head withdrawal thresholds and ipsi- and contralateral hindpaw withdrawal thresholds were lowered and remained reduced for 28 days. Elevated levels of calcitonin gene-related peptide (CGRP) within the trigeminal ganglion temporally correlated with this mechanical allodynia. Inflammation also induced an increase in the number of CGRP and substance P (SP)-immunopositive trigeminal ganglion neurons innervating inflamed muscle but did not evoke a shift in the size distribution of peptidergic muscle afferent neurons. Trigeminal proprioceptive muscle afferent neurons situated within the brainstem in the mesencephalic trigeminal nucleus did not express CGRP or SP prior to or following inflammation. Intravenous administration of CGRP receptor antagonist (8-37) two minutes prior to adjuvant injection blocked plasma extravasation and abolished both head and hindlimb mechanical allodynia. Local injection of CGRP antagonist directly into the masseter muscle prior to CFA produced similar, but less pronounced, effects. These findings indicate that unilateral craniofacial muscle inflammation produces mechanical allodynia at distant sites and upregulates CGRP and SP in primary afferent neurons innervating deep tissues. These data further implicate CGRP and SP in deep tissue nociceptive mechanisms and suggest that peptide antagonists may have therapeutic potential for musculoskeletal pain.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Miosite/tratamento farmacológico , Miosite/metabolismo , Neuropeptídeos/metabolismo , Fragmentos de Peptídeos/administração & dosagem , Gânglio Trigeminal/metabolismo , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Hiperalgesia/etiologia , Masculino , Músculo Masseter/efeitos dos fármacos , Músculo Masseter/inervação , Músculo Masseter/metabolismo , Miosite/complicações , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/metabolismo , Neuropeptídeos/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Substância P/antagonistas & inibidores , Substância P/metabolismo , Resultado do Tratamento , Gânglio Trigeminal/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
12.
Pain ; 117(3): 280-291, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16153775

RESUMO

The distribution and modulation of the P2X(3) receptor was studied in trigeminal ganglion neurons to provide insight into the role of ATP in craniofacial sensory mechanisms. Binding to the d-galactose specific lectin IB4 was found in 73% of P2X(3)-positive neurons while only 16% of IB4 neurons expressed P2X(3). Neurons expressing P2X(3) alone were significantly larger than IB4-or IB4/P2X(3)-positive neurons. Investigation of target-specificity revealed that 22% of trigeminal ganglion muscle afferent neurons were positive for P2X(3) versus 16% of cutaneous afferent neurons. Muscle P2X(3) afferents were significantly smaller than the overall muscle afferent population while P2X(3) cutaneous afferent neurons were not. Presumptive heteromeric (P2X(2/3)) muscle afferent neurons were also identified and comprised 77% of the P2X(3) muscle afferent population. Muscle afferent neurons co-expressed P2X(3) with either calcitonin gene-related peptide (15%) or substance P (4%). The number of P2X(3)-positive muscle afferent neurons significantly increased one and four days following complete Freund's adjuvant-induced masseter muscle inflammation, but significantly decreased after 12 days. These results indicate that within trigeminal ganglia: (1) the P2X(3) receptor is expressed in both small and medium-sized neurons; (2) the P2X(3) receptor is not exclusively expressed in IB4 neurons; (3) P2X(3) is co-expressed with neuropeptides; (4) differences in the proportion of cutaneous versus muscle P2X(3) afferents are not apparent. Trigeminal P2X(3) neurons therefore differ markedly from dorsal root ganglion P2X(3) afferents. This study also shows that deep tissue inflammation modulates expression of the P2X(3) receptor and thus may warrant exploration as a target for therapeutic intervention.


Assuntos
Gânglios Espinais/citologia , Regulação da Expressão Gênica/genética , Miosite/metabolismo , Neurônios Aferentes/metabolismo , Receptores Purinérgicos P2/metabolismo , Gânglio Trigeminal/citologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Contagem de Células/métodos , Tamanho Celular , Dextranos/metabolismo , Adjuvante de Freund , Imuno-Histoquímica/métodos , Masculino , Miosite/induzido quimicamente , Mitógenos de Phytolacca americana/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Purinérgicos P2X3 , Rodaminas/metabolismo , Pele/citologia , Pele/inervação , Pele/metabolismo
13.
Neuroreport ; 16(14): 1561-4, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16148745

RESUMO

This study examined the ultrastructures of neuronal elements within trigeminal mesencephalic nucleus by labeling masseteric mesencephalic neurons and masseter motoneurons with injection of horseradish peroxidase into masseteric muscle. Of eight horseradish peroxidase-labeled muscle spindle afferents examined, four terminals showed synaptic contact with labeled dendrites of masseteric motoneurons, two with labeled somata, and the remaining two with unlabeled dendrites. A few of the labeled dendrites showed intimate contact with the somata of the trigeminal mesencephalic nucleus neurons. These results provide morphological evidence of synaptic contact of recurring masseteric muscle spindle afferents with the trigeminal mesencephalic nucleus somata and also suggest the presence of electrical synapses between the somata of the trigeminal mesencephalic nucleus neurons and dendrites of jaw-closing motoneurons.


Assuntos
Músculo Masseter/inervação , Neurônios Motores/ultraestrutura , Neurônios/ultraestrutura , Núcleos do Trigêmeo/citologia , Animais , Dendritos/metabolismo , Dendritos/ultraestrutura , Peroxidase do Rábano Silvestre/farmacocinética , Músculo Masseter/efeitos dos fármacos , Músculo Masseter/metabolismo , Microscopia Eletrônica de Transmissão/métodos , Neurônios Motores/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Neuroreport ; 16(14): 1565-8, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16148746

RESUMO

Signal substances of axon terminals presynaptic to jaw spindle Ia afferents and their ultrastructural features were examined using a combination of intra-axonal horseradish peroxidase injection and postembedding immunogold-labeling techniques in cats. A total of 35 axon terminals presynaptic to 22 horseradish peroxidase-labeled Ia boutons were examined. Of the 35 presynaptic axon terminals, 14 (40%) were immunoreactive for both gamma-aminobutyric acid and glycine, 9 (26%) for gamma-aminobutyric acid alone and 9 (26%) for glycine alone. The bouton volume, mitochondrial volume, active zone area, and apposed surface area were larger for Ia boutons than for presynaptic axon terminals, while each of the values is similar among the three types of presynaptic axon terminals. These results suggest that gamma-aminobutyric acid and glycine play an important role for modulating the jaw-jerk reflex presynaptically and that the smaller size of presynaptic axon terminals is important to prevent action potential generation from Ia afferents.


Assuntos
Arcada Osseodentária/fisiologia , Neurônios Motores/fisiologia , Reflexo/fisiologia , Núcleo Espinal do Trigêmeo/citologia , Análise de Variância , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Gatos , Contagem de Células/métodos , Glicina/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Imuno-Histoquímica/métodos , Microscopia Imunoeletrônica/métodos , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Fusos Musculares/metabolismo , Fibras Nervosas/metabolismo , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ácido gama-Aminobutírico/metabolismo
15.
Brain Res ; 1036(1-2): 208-12, 2005 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-15725420

RESUMO

Intracellular Neurobiotin-injections were used to label functionally identified neurons in the rostro-dorsomedial part of the trigeminal oral nucleus (Vo.r) in the cat. The labeled Vo.r neurons with the mechanoreceptive field in oral tissues innervated bilaterally either jaw-opening motoneurons or jaw-closing motoneurons. This result suggests that Vo.r neurons play an important role in sensory-motor reflexes responsible for coordination of bilaterally symmetrical jaw movements.


Assuntos
Axônios/ultraestrutura , Biotina/análogos & derivados , Lateralidade Funcional/fisiologia , Neurônios Motores/citologia , Vias Neurais/citologia , Ponte/citologia , Núcleo Espinal do Trigêmeo/citologia , Animais , Axônios/fisiologia , Gatos , Dendritos/fisiologia , Dendritos/ultraestrutura , Nervo Mandibular/citologia , Nervo Mandibular/fisiologia , Músculos da Mastigação/inervação , Músculos da Mastigação/fisiologia , Neurônios Motores/fisiologia , Vias Neurais/fisiologia , Ponte/fisiologia , Terminações Pré-Sinápticas/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Reflexo Anormal/fisiologia , Núcleo Espinal do Trigêmeo/fisiologia
16.
Brain Res ; 1060(1-2): 118-25, 2005 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16202985

RESUMO

Previous ultrastructural studies indicating a higher number of axoaxonic contacts on individual low-threshold mechanoreceptive afferents in the principalis (Vp) than in the oralis (Vo) of cat trigeminal sensory nuclear complex (TSNC) suggest that the synaptic microcircuitry associated with primary afferents manifests unique differences across the sensory nuclei of TSNC. To address this issue, we analyzed synaptic microcircuits associated with fast adapting vibrissa afferent terminals in the interpolaris (Vi) and caudalis (Vc, laminae III/IV) by using intraaxonal injections of horseradish peroxidase (HRP) in cats. Forty-two and 65 HRP-labeled boutons were analyzed in the Vi and Vc, respectively. The labeled boutons contained clear, spherical vesicles. They most frequently formed asymmetric axodendritic synapses and were commonly postsynaptic to unlabeled axon terminals containing pleomorphic vesicles (p-endings) with symmetric junctions. The examination of synaptic contacts over the entire surface of individual boutons indicated that the afferent boutons made contacts with an average of two postsynaptic targets in the Vi and Vc. In contrast, axoaxonic contacts, and labeled boutons participating in synaptic triads, where p-endings contacted both the boutons and their postsynaptic targets, were, on average, higher in the Vi than in the Vc. These results suggest that the output of sensory information conveyed through low-threshold mechanoreceptive afferents is more strongly controlled at the level of the first synapse by presynaptic and postsynaptic mechanisms in the Vi responsible for sensory discriminative functions than in the Vc for sensorimotor reflexive functions.


Assuntos
Neurônios Aferentes/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Núcleos do Trigêmeo/ultraestrutura , Vias Aferentes/citologia , Vias Aferentes/ultraestrutura , Animais , Gatos , Microscopia Eletrônica de Transmissão , Núcleos do Trigêmeo/citologia , Vibrissas/inervação
17.
J Comp Neurol ; 460(2): 167-79, 2003 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-12687682

RESUMO

Retrograde labeling was combined with cytochemistry to investigate phenotypic differences in primary afferent neurons relaying sensory information from deep and superficial craniofacial tissues. Calcitonin gene-related peptide (CGRP), substance P (SP), somatostatin (SOM) immunoreactivity and isolectin IB4, and cholera toxin B (ChTB) binding were examined for trigeminal masticatory muscle and cutaneous afferent neurons. Somata labeled from muscle were larger than cutaneous afferent neurons. Muscle afferent neurons exhibited positive staining as follows: 22% CGRP, 5% SP, 0% SOM; 18% ChTB, 5% IB4. The somata of CGRP- and SP-positive muscle afferent neurons were smaller than that of the overall muscle afferent population. Size differences were not detected between IB4- or ChTB-binding muscle afferent neurons and the total muscle afferent population. The following distribution was found for cutaneous afferent neurons: 26% CGRP, 7% SP, 1% SOM, 26% ChTB, 44% IB4. Cutaneous afferent neurons positive for SP were smaller, while ChTB-binding cutaneous afferents were larger than the overall cutaneous afferent population. No size differences were found between cutaneous CGRP-, SOM-, or IB4-positive neurons and the total cutaneous afferent population. Target-specific differences exist for SOM and IB4. The percentage of cutaneous afferent neurons positive for SOM and IB4 exceeds that for SOM- or IB4-positive muscle afferents. The number of retrogradely labeled neurons never differed between sexes. The percentage of retrogradely labeled muscle afferent neurons that were CGRP-positive was greater in males than females. These data indicate the presence of phenotypic, target, and sex differences in trigeminal ganglion primary afferent neurons.


Assuntos
Músculo Esquelético/química , Neurônios Aferentes/química , Fenótipo , Gânglio Trigeminal/química , Animais , Tamanho Celular/fisiologia , Feminino , Masculino , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/fisiologia , Ratos , Ratos Sprague-Dawley , Caracteres Sexuais , Pele/química , Pele/citologia , Gânglio Trigeminal/citologia , Gânglio Trigeminal/fisiologia
18.
J Comp Neurol ; 463(1): 13-24, 2003 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-12811799

RESUMO

Previous studies provide evidence that a structure/function correlation exists in the distinct zones of the trigeminal sensory nuclei. To evaluate this relationship, we examined the ultrastructure of afferent terminals from the tooth pulp in the rat trigeminal sensory nuclei: the principalis (Vp), the dorsomedial part of oral nucleus (Vdm), and the superficial layers of caudalis (Vc), by using transganglionic transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). A total of 93 labeled boutons were serially sectioned, in which some sections were incubated with gamma-aminobutyric acid (GABA) antiserum. Almost all labeled boutons formed asymmetric contact with nonprimary dendrites, in which more than half of labeled boutons in the Vc made synapses with their spines. The labeled boutons could be divided into two types on the basis of numbers of dense-cored vesicles (DCVs) in a boutons: S-type and DCV-type. Almost all labeled boutons in the Vp and Vdm were S-type, whereas two types were distributed evenly in the Vc. In contrast to DCV-type boutons, the S-type was frequently postsynaptic to unlabeled axon terminals containing a mixture of round, oval, and flattened vesicles (p-endings) and forming symmetrical synapses. Most p-endings examined were immunoreactive to GABA. The frequency of axoaxonic contacts was higher for labeled boutons in the Vp than in the Vdm and Vc. These results suggest that the three structures of trigeminal sensory nuclei serve distinct functions in nociceptive processing.


Assuntos
Vias Aferentes/citologia , Polpa Dentária/inervação , Terminações Pré-Sinápticas/ultraestrutura , Núcleos do Trigêmeo/citologia , Animais , Masculino , Microscopia Eletrônica , Ratos , Ratos Sprague-Dawley , Sinapses/ultraestrutura , Dente/inervação , Núcleos do Trigêmeo/química , Ácido gama-Aminobutírico/análise
19.
Neuroreport ; 15(16): 2485-9, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15538180

RESUMO

This study analyzed quantitatively the ultrastructural features of tooth pulp afferent terminals and their presynaptic axonal endings (p-endings) in the trigeminal principal (Vp), dorsomedial oral (Vdm), and caudal nuclei (Vc). Mitochondrial volume, active zone area, apposed surface area, and vesicle number were highly correlated with afferent bouton volume. The afferent bouton volume varied widely in Vp, compared to that in Vdm and Vc. The values of all parameters of p-endings were within a narrow range, and were smaller than those of afferent boutons. The afferent bouton volume correlated with the number of postsynaptic dendrites and p-endings. These results suggest that pulpal afferent information is regulated in a unique manner in the each trigeminal sensory nucleus.


Assuntos
Vias Aferentes/ultraestrutura , Tronco Encefálico/ultraestrutura , Polpa Dentária/inervação , Terminações Pré-Sinápticas/ultraestrutura , Animais , Contagem de Células , Masculino , Microscopia Eletrônica de Transmissão/métodos , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Terminações Pré-Sinápticas/metabolismo , Ratos , Conjugado Aglutinina do Germe de Trigo-Peroxidase do Rábano Silvestre/metabolismo
20.
J Comp Neurol ; 514(4): 368-86, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19330820

RESUMO

Little is known about the organization of corticofugal projections controlling antagonistic jaw muscles. To address this issue, we employed retrograde (Fluorogold; FG) and anterograde (biotinylated dextran amine; BDA) tracing techniques in rats. Three groups of premotoneurons were identified by injecting FG into the jaw-closing (JC) and -opening (JO) subdivisions of the trigeminal motor nucleus (Vmo). These were 1) the intertrigeminal region (Vint) and principal trigeminal sensory nucleus for JC nucleus; 2) the reticular region medial to JO nucleus (RmJO) for JO nucleus; and 3) the parabrachial (Pb) and supratrigeminal (Vsup) nuclei, reticular regions medial and ventral to JC nucleus, rostrodorsomedial oralis (Vor), and juxtatrigeminal region (Vjuxt) containing a mixture of premotoneurons to both the nuclei. Subsequently, FG was injected into the representative premotoneuron structures. The JC and JO premotoneurons received main afferents from the lateral and medial agranular fields of motor cortex (Agl and Agm), respectively, whereas afferents to the nuclei with both JC and JO premotoneurons arose from Agl also and from primary somatosensory cortex (S1). Finally, BDA was injected into each of the three cortical areas representing the premotoneuron structures to complement the FG data. The Agl and Agm projected to reticular regions around the Vmo, whereas the Pb, Vsup, Vor, and Vjuxt received input from Agl. The S1 projected to the trigeminal sensory nuclei as well as to the Pb, Vsup, and Vjuxt. These results suggest that corticofugal projections to Vmo via premotoneuron structures consist of multiple pathways, which influence distinct patterns of jaw movements.


Assuntos
Arcada Osseodentária/inervação , Músculos da Mastigação/inervação , Neurônios Motores , Núcleos do Trigêmeo/anatomia & histologia , Animais , Biotina/análogos & derivados , Dextranos , Arcada Osseodentária/anatomia & histologia , Masculino , Músculos da Mastigação/anatomia & histologia , Córtex Motor/anatomia & histologia , Vias Neurais/anatomia & histologia , Fotomicrografia , Ratos , Ratos Wistar , Córtex Somatossensorial/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA