Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 14: 78, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24666982

RESUMO

BACKGROUND: Temperature and solar radiation influence Vitis vinifera L. berry ripening. Both environmental conditions fluctuate cyclically on a daily period basis and the strength of this fluctuation affects grape ripening too. Additionally, a molecular circadian clock regulates daily cyclic expression in a large proportion of the plant transcriptome modulating multiple developmental processes in diverse plant organs and developmental phases. Circadian cycling of fruit transcriptomes has not been characterized in detail despite their putative relevance in the final composition of the fruit. Thus, in this study, gene expression throughout 24 h periods in pre-ripe berries of Tempranillo and Verdejo grapevine cultivars was followed to determine whether different ripening transcriptional programs are activated during certain times of day in different grape tissues and genotypes. RESULTS: Microarray analyses identified oscillatory transcriptional profiles following circadian variations in the photocycle and the thermocycle. A higher number of expression oscillating transcripts were detected in samples carrying exocarp tissue including biotic stress-responsive transcripts activated around dawn. Thermotolerance-like responses and regulation of circadian clock-related genes were observed in all studied samples. Indeed, homologs of core clock genes were identified in the grapevine genome and, among them, VvREVEILLE1 (VvRVE1), showed a consistent circadian expression rhythm in every grape berry tissue analysed. Light signalling components and terpenoid biosynthetic transcripts were specifically induced during the daytime in Verdejo, a cultivar bearing white-skinned and aromatic berries, whereas transcripts involved in phenylpropanoid biosynthesis were more prominently regulated in Tempranillo, a cultivar bearing black-skinned berries. CONCLUSIONS: The transcriptome of ripening fruits varies in response to daily environmental changes, which might partially be under the control of circadian clock components. Certain cultivar and berry tissue features could rely on specific circadian oscillatory expression profiles. These findings may help to a better understanding of the progress of berry ripening in short term time scales.


Assuntos
Ritmo Circadiano/fisiologia , Frutas/metabolismo , Frutas/fisiologia , Vitis/metabolismo , Vitis/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas
2.
J Sci Food Agric ; 94(10): 2073-82, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24323949

RESUMO

BACKGROUND: The aim of this study was to determine the effect of three factors directly related to the amino acid content of grapes and their interaction. These three factors were vintage, maturity degree and irrigation. The evolution of amino acid was also assessed during the winemaking along with the effect of maturity and irrigation on the biogenic amine formation. The grapes used for this study were of the Verdejo variety. RESULTS: The results indicated that there was a strong vintage effect on amino acid content in grapes, which seemed to be clearly related to climatic conditions. The effect of maturity on amino acid content depended on vintage, irrigation and the amino acid itself although it was observed that irrigation caused the increase of most amino acids present in the berry. Irrigation did not affect the evolution of nitrogen compounds during the alcoholic fermentation process but the maturity degree in some of the amino acids tested did so. No direct relationship could be established between irrigation or maturity degree and biogenic amines. However, it should be noted that the biogenic amine content was very low. CONCLUSIONS: Vintage has a strong effect on the amino acid content in grapes which appears to be related to weather conditions. No direct relationship has been found between irrigation or maturity degree and biogenic amines content. Furthermore, it is noted that biogenic amine content found in final wines was very low.


Assuntos
Irrigação Agrícola , Aminoácidos/metabolismo , Aminas Biogênicas/análise , Fermentação , Frutas/metabolismo , Vitis/metabolismo , Vinho/análise , Clima , Humanos , Nitrogênio/metabolismo , Especificidade da Espécie , Vitis/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA