Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Microbiol ; 119(5): 630-639, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024243

RESUMO

There are multiple RNA degradation mechanisms in eukaryotes, key among these is mRNA decapping, which requires the Dcp1-Dcp2 complex. Decapping is involved in various processes including nonsense-mediated decay (NMD), a process by which aberrant transcripts with a premature termination codon are targeted for translational repression and rapid decay. NMD is ubiquitous throughout eukaryotes and the key factors involved are highly conserved, although many differences have evolved. We investigated the role of Aspergillus nidulans decapping factors in NMD and found that they are not required, unlike Saccharomyces cerevisiae. Intriguingly, we also observed that the disruption of one of the decapping factors, Dcp1, leads to an aberrant ribosome profile. Importantly this was not shared by mutations disrupting Dcp2, the catalytic component of the decapping complex. The aberrant profile is associated with the accumulation of a high proportion of 25S rRNA degradation intermediates. We identified the location of three rRNA cleavage sites and show that a mutation targeted to disrupt the catalytic domain of Dcp2 partially suppresses the aberrant profile of Δdcp1 strains. This suggests that in the absence of Dcp1, cleaved ribosomal components accumulate and Dcp2 may be directly involved in mediating these cleavage events. We discuss the implications of this.


Assuntos
Aspergillus nidulans , Proteínas de Saccharomyces cerevisiae , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Ribossomos/genética , Ribossomos/metabolismo , Endorribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Microbiol ; 115(2): 238-254, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33047379

RESUMO

The role of post-transcriptional RNA modification is of growing interest. One example is the addition of non-templated uridine residues to the 3' end of transcripts. In mammalian systems, uridylation is integral to cell cycle control of histone mRNA levels. This regulatory mechanism is dependent on the nonsense-mediated decay (NMD) component, Upf1, which promotes histone mRNA uridylation and degradation in response to the arrest of DNA synthesis. We have identified a similar system in Aspergillus nidulans, where Upf1 is required for the regulation of histone mRNA levels. However, other NMD components are also implicated, distinguishing it from the mammalian system. As in human cells, 3' uridylation of histone mRNA is induced upon replication arrest. Disruption of this 3' tagging has a significant but limited effect on histone transcript regulation, consistent with multiple mechanisms acting to regulate mRNA levels. Interestingly, 3' end degraded transcripts are also subject to re-adenylation. Both mRNA pyrimidine tagging and re-adenylation are dependent on the same terminal-nucleotidyltransferases, CutA, and CutB, and we show this is consistent with the in vitro activities of both enzymes. Based on these data we argue that mRNA 3' tagging has diverse and distinct roles associated with transcript degradation, functionality and regulation.


Assuntos
Aspergillus nidulans/genética , Histonas/genética , RNA Mensageiro/genética , Regiões 3' não Traduzidas/genética , Replicação do DNA/fisiologia , Glutationa/análogos & derivados , Glutationa/genética , Glutationa/metabolismo , Histonas/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , RNA Helicases/metabolismo , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transativadores/metabolismo , Uridina/química
3.
RNA Biol ; 16(9): 1147-1155, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31116665

RESUMO

Evidence from yeast and mammals argues the existence of cross-talk between transcription and mRNA decay. Stabilization of transcripts upon depletion of mRNA decay factors generally leads to no changes in mRNA abundance, attributing this to decreased transcription rates. We show that knockdown of human XRN1, CNOT6 and ETF1 genes in HepG2 cells led to significant alteration in stability of specific mRNAs, alterations in half-life were inversely associated with transcription rates, mostly not resulting in changes in abundance. We demonstrate the existence of the gene expression buffering mechanism in human cells that responds to both transcript stabilization and destabilization to maintain mRNA abundance via altered transcription rates and may involve translation. We propose that this buffering may hold novel cancer therapeutic targets.


Assuntos
Exorribonucleases/genética , Proteínas Associadas aos Microtúbulos/genética , Neoplasias/genética , Fatores de Terminação de Peptídeos/genética , Regulação Neoplásica da Expressão Gênica/genética , Células Hep G2 , Humanos , Estabilidade de RNA/genética , RNA Mensageiro/genética
4.
Mol Microbiol ; 89(5): 975-88, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23841692

RESUMO

Differential regulation of transcript stability is an effective means by which an organism can modulate gene expression. A well-characterized example is glutamine signalled degradation of specific transcripts in Aspergillus nidulans. In the case of areA, which encodes a wide-domain transcription factor mediating nitrogen metabolite repression, the signal is mediated through a highly conserved region of the 3' UTR. Utilizing this RNA sequence we isolated RrmA, an RNA recognition motif protein. Disruption of the respective gene led to loss of both glutamine signalled transcript degradation as well as nitrate signalled stabilization of niaD mRNA. However, nitrogen starvation was shown to act independently of RrmA in stabilizing certain transcripts. RrmA was also implicated in the regulation of arginine catabolism gene expression and the oxidative stress responses at the level of mRNA stability. ΔrrmA mutants are hypersensitive to oxidative stress. This phenotype correlates with destabilization of eifE and dhsA mRNA. eifE encodes eIF5A, a translation factor within which a conserved lysine is post-translationally modified to hypusine, a process requiring DhsA. Intriguingly, for specific transcripts RrmA mediates both stabilization and destabilization and the specificity of the signals transduced is transcript dependent, suggesting it acts in consort with other factors which differ between transcripts.


Assuntos
Aspergillus nidulans/genética , Regulação da Expressão Gênica , Nitrogênio/metabolismo , Estresse Oxidativo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Arginina/metabolismo , Deleção de Genes , Glutamina/metabolismo , Proteínas de Ligação a RNA/genética
5.
J Endocrinol ; 260(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38113381

RESUMO

Over the last two decades, it has become clear that the human gut microbiota, a complex community of bacteria, archaea, fungi and viruses, are a critical determinant of human health and disease. Microbiota-derived metabolites provide the host with energy, protect against pathogens, modulate immune and endocrine systems as well as the level of reactive oxygen species in the gut. It has come with no surprise that the human gut microbiota is also linked to the production, utilisation and regulation of host hormones. This implies that the gut microbiota is capable of influencing human behaviour, appetite regulation and metabolism as well as development and immunity. Many of the advances in the field of crosstalk between the gut microbiota and host health, disease and behaviours are generally based on DNA analyses of microbial populations and transplantation of monocultured commensal species to germ-free animals. Recent reports on the activity of the gut microbiota in gastrointestinal diseases such as inflammatory bowel disease and colorectal cancer have highlighted two important points. First, microbial DNA-based abundance does not always correlate with their level of activity and secondly, that metabolism of the complex gut microbiota is regulated by host health status, including the production and metabolism of several human hormones. In this review, we will discuss the lessons learnt from studying the activity and metabolism of the human gut microbiota in health and across gastrointestinal diseases, and how these findings can shape future research on the microbiome-gut-endocrine axis.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Animais , Humanos , Microbioma Gastrointestinal/fisiologia , Sistema Endócrino , Hormônios , DNA
6.
BMC Genomics ; 14: 847, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24299161

RESUMO

BACKGROUND: The filamentous fungus Aspergillus nidulans has been a tractable model organism for cell biology and genetics for over 60 years. It is among a large number of Aspergilli whose genomes have been sequenced since 2005, including medically and industrially important species. In order to advance our knowledge of its biology and increase its utility as a genetic model by improving gene annotation we sequenced the transcriptome of A. nidulans with a focus on 5' end analysis. RESULTS: Strand-specific whole transcriptome sequencing showed that 80-95% of annotated genes appear to be expressed across the conditions tested. We estimate that the total gene number should be increased by approximately 1000, to 11,800. With respect to splicing 8.3% of genes had multiple alternative transcripts, but alternative splicing by exon-skipping was very rare. 75% of annotated genes showed some level of antisense transcription and for one gene, meaB, we demonstrated the antisense transcript has a regulatory role. Specific sequencing of the 5' ends of transcripts was used for genome wide mapping of transcription start sites, allowing us to interrogate over 7000 promoters and 5' untranslated regions. CONCLUSIONS: Our data has revealed the complexity of the A. nidulans transcriptome and contributed to improved genome annotation. The data can be viewed on the AspGD genome browser.


Assuntos
Aspergillus nidulans/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Regiões Promotoras Genéticas , Transcriptoma , Regiões 5' não Traduzidas , Processamento Alternativo , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Íntrons , Anotação de Sequência Molecular , Dados de Sequência Molecular , Motivos de Nucleotídeos , Fases de Leitura Aberta , Matrizes de Pontuação de Posição Específica , RNA Antissenso , RNA não Traduzido/genética , Alinhamento de Sequência , Sítio de Iniciação de Transcrição , Transcrição Gênica
7.
mSphere ; 8(2): e0062622, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36847529

RESUMO

Taxonomic composition of the gut microbiota in colorectal cancer (CRC) patients is altered, a newly recognized driving force behind the disease, the activity of which has been overlooked. We conducted a pilot study on active microbial taxonomic composition in the CRC gut via metatranscriptome and 16S rRNA gene (rDNA) sequencing. We revealed sub-populations in CRC (n = 10) and control (n = 10) cohorts of over-active and dormant species, as changes in activity were often independent from abundance. Strikingly, the diseased gut significantly influenced transcription of butyrate producing bacteria, clinically relevant ESKAPE, oral, and Enterobacteriaceae pathogens. A focused analysis of antibiotic (AB) resistance genes showed that both CRC and control microbiota displayed a multidrug resistant phenotype, including ESKAPE species. However, a significant majority of AB resistance determinants of several AB families were upregulated in the CRC gut. We found that environmental gut factors regulated AB resistance gene expression in vitro of aerobic CRC microbiota, specifically acid, osmotic, and oxidative pressures in a predominantly health-dependent manner. This was consistent with metatranscriptome analysis of these cohorts, while osmotic and oxidative pressures induced differentially regulated responses. This work provides novel insights into the organization of active microbes in CRC, and reveals significant regulation of functionally related group activity, and unexpected microbiome-wide upregulation of AB resistance genes in response to environmental changes of the cancerous gut. IMPORTANCE The human gut microbiota in colorectal cancer patients have a distinct population compared to heathy counterparts. However, the activity (gene expression) of this community has not been investigated. Following quantification of both expressed genes and gene abundance, we established that a sub-population of microbes lies dormant in the cancerous gut, while other groups, namely, clinically relevant oral and multi-drug resistant pathogens, significantly increased in activity. Targeted analysis of community-wide antibiotic resistance determinants found that their expression occurs independently of antibiotic treatment, regardless of host health. However, its expression in aerobes, in vitro, can be regulated by specific environmental stresses of the gut, including organic and inorganic acid pressure in a health-dependent manner. This work advances the field of microbiology in the context of disease, showing, for the first time, that colorectal cancer regulates activity of gut microorganisms and that specific gut environmental pressures can modulate their antibiotic resistance determinants expression.


Assuntos
Neoplasias Colorretais , Microbioma Gastrointestinal , Microbiota , Humanos , RNA Ribossômico 16S/genética , Projetos Piloto , Microbiota/genética , Microbioma Gastrointestinal/genética , Antibacterianos/farmacologia , Neoplasias Colorretais/microbiologia
8.
mSphere ; 8(2): e0062722, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36847536

RESUMO

The gut microbiome is implicated in the pathology of colorectal cancer (CRC). However, the mechanisms by which the microbiota actively contribute to disease onset and progression remain elusive. In this pilot study, we sequenced fecal metatranscriptomes of 10 non-CRC and 10 CRC patient gut microbiomes and conducted differential gene expression analyses to assess any changed functionality in disease. We report that oxidative stress responses were the dominant activity across cohorts, an overlooked protective housekeeping role of the human gut microbiome. However, expression of hydrogen peroxide and nitric oxide-scavenging genes was diminished and augmented, respectively, positing that these regulated microbial responses have implications for CRC pathology. CRC microbes enhanced expression of genes for host colonization, biofilm formation, genetic exchange, virulence determinants, antibiotic, and acid resistances. Moreover, microbes promoted transcription of genes involved in metabolism of several beneficial metabolites, suggesting their contribution to patient metabolite deficiencies previously solely attributed to tumor cells. We showed in vitro that expression of genes involved in amino acid-dependent acid resistance mechanisms of meta-gut Escherichia coli responded differently to acid, salt, and oxidative pressures under aerobic conditions. These responses were mostly dictated by the host health status of origin of the microbiota, suggesting their exposure to fundamentally different gut conditions. These findings for the first time highlight mechanisms by which the gut microbiota can either protect against or drive colorectal cancer and provide insights into the cancerous gut environment that drives functional characteristics of the microbiome. IMPORTANCE The human gut microbiota has the genetic potential to drive colorectal cancer onset and progression; however, the expression of this genetic potential during the disease has not been investigated. We found that microbial expression of genes that detoxify DNA-damaging reactive oxygen species, which drive colorectal cancer, is compromised in cancer. We observed a greater activation of expression of genes involved in virulence, host colonization, exchange of genetic material, metabolite utilization, defense against antibiotics, and environmental pressures. Culturing gut Escherichia coli of cancerous and noncancerous metamicrobiota revealed different regulatory responses of amino acid-dependent acid resistance mechanisms in a health-dependent manner under environmental acid, oxidative, and osmotic pressures. Here, for the first time, we demonstrate that the activity of microbial genomes is regulated by the health status of the gut in vivo and in vitro and provides new insights for shifts in microbial gene expression in colorectal cancer.


Assuntos
Neoplasias Colorretais , Microbiota , Humanos , Espécies Reativas de Oxigênio , Transcriptoma , Projetos Piloto , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Escherichia coli/genética , Microambiente Tumoral
9.
Biochem Soc Trans ; 40(4): 810-4, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22817739

RESUMO

Although functional RNA is generally protected against degradation, defects or irregularity during RNA biogenesis lead to rapid degradation. Cellular surveillance mechanisms therefore need to distinguish aberrant, erroneous, damaged or aging transcripts from normal RNAs in order to maintain fidelity and control of gene expression. The detection of defects seems to be primarily based on functionality or aberrant rates of a given step in RNA biogenesis, allowing efficient detection of many different errors without recognition of their specific nature. We propose that the addition of non-templated nucleotides to the 3' end of mRNAs and small non-coding RNAs, 3' tagging, is the primary means by which malfunctioning RNAs are labelled, promoting their functional repression and degradation. However, the addition of non-templated nucleotides to transcripts can have diverse effects which vary with location, length, substrate and sequence.


Assuntos
Aspergillus nidulans/genética , Eucariotos/genética , RNA Mensageiro/genética
10.
Mol Microbiol ; 76(2): 503-16, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20233300

RESUMO

Transcript degradation is a key step in gene regulation. In eukaryotes, mRNA decay is generally initiated by removal of the poly(A) tail mediated by the Ccr4-Caf1-Not complex. Deadenylated transcripts are then rapidly degraded, primarily via the decapping-dependent pathway. Components of this pathway can be localized into highly dynamic cytoplasmic foci, the mRNA processing (P)-bodies. We have undertaken confocal fluorescence microscopy to monitor P-bodies in Aspergillus nidulans. As in other organisms a dynamic shift in P-body formation occurs in response to diverse physiological signals. Significantly, both this cellular response and the signalled degradation of specific transcripts are dependent on the nuclease activity of Caf1 but not Ccr4. P-body formation is disrupted in A. nidulans strains deleted for Edc3, an enhancer of decapping, or CutA, which encodes a nucleotidyltransferase that triggers mRNA decapping by the addition of a CUCU tag to the poly(A) tail. As with DeltacutA, Deltaedc3 led to reduced rates of transcript degradation. These data link P-bodies to both the optimization and regulation of transcript degradation.


Assuntos
Aspergillus nidulans/fisiologia , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Estabilidade de RNA , RNA Fúngico/metabolismo , Aspergillus nidulans/metabolismo , Deleção de Genes , Microscopia Confocal , Microscopia de Fluorescência , Estresse Fisiológico
11.
Eukaryot Cell ; 9(10): 1588-601, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729292

RESUMO

In Fusarium fujikuroi, bikaverin (BIK) biosynthesis is subject to repression by nitrogen. Unlike most genes subject to nitrogen metabolite repression, it has been shown that transcription of bik biosynthetic genes is not AreA dependent. Searching for additional transcription factors that may be involved in nitrogen regulation, we cloned and characterized the orthologue of Aspergillus nidulans meaB, which encodes a bZIP transcription factor. Two transcripts are derived from F. fujikuroi meaB: the large transcript (meaB(L)) predominates under nitrogen-sufficient conditions and the smaller transcript (meaB(S)) under nitrogen limitation, in an AreA-dependent manner. MeaB is specifically translocated to the nucleus under nitrogen-sufficient conditions in both F. fujikuroi and A. nidulans. Deletion of meaB resulted in partial upregulation of several nitrogen-regulated genes, but only in the ΔmeaB ΔareA double mutant were the bikaverin genes significantly upregulated in the presence of glutamine. These data demonstrate that MeaB and AreA coordinately mediate nitrogen metabolite repression and, importantly, that independently of AreA, MeaB can mediate nitrogen metabolite repression at specific loci in F. fujikuroi.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Clonagem Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Deleção de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Nitrogênio/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xantonas/metabolismo
12.
Microb Biotechnol ; 13(3): 669-682, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31663669

RESUMO

In agriculture, antibiotics are used for the treatment and prevention of livestock disease. Antibiotics perturb the bacterial gut composition but the extent of these changes and potential consequences for animal and human health is still debated. Six calves were housed in a controlled environment. Three animals received an injection of the antibiotic florfenicol (Nuflor), and three received no treatment. Faecal samples were collected at 0, 3 and 7 days, and bacterial communities were profiled to assess the impact of a therapy on the gut microbiota. Phylogenetic analysis (16S-rDNA) established that at day 7, antibiotic-treated microbiota showed a 10-fold increase in facultative anaerobic Escherichia spp, a signature of imbalanced microbiota, dysbiosis. The antibiotic resistome showed a high background of antibiotic resistance genes, which did not significantly change in response to florfenicol. However, the maintenance of Escherichia coli plasmid-encoded quinolone, oqxB and propagation of mcr-2, and colistin resistance genes were observed and confirmed by Sanger sequencing. The microbiota of treated animals was enriched with energy harvesting bacteria, common to obese microbial communities. We propose that antibiotic treatment of healthy animals leads to unbalanced, disease- and obese-related microbiota that promotes growth of E. coli carrying resistance genes on mobile elements, potentially increasing the risk of transmission of antibiotic resistant bacteria to humans.


Assuntos
Bactérias , Disbiose , Microbioma Gastrointestinal , Tianfenicol/análogos & derivados , Animais , Antibacterianos/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Bovinos , Farmacorresistência Bacteriana/efeitos dos fármacos , Disbiose/induzido quimicamente , Disbiose/microbiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Obesidade/microbiologia , Filogenia , Tianfenicol/farmacologia
13.
Med Mycol ; 44(Supplement_1): S13-S16, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30408896

RESUMO

A fundamental aspect of any organism's success is the ability to monitor and respond effectively to its environment, a process which is largely achieved through the appropriate regulation of gene expression. There are few better examples than fungi, which inhabit diverse and often hostile environments, ranging from leaf litter to the human body. Regulation can occur at many levels, and as we investigate specific genes in detail, the paradigm is one of increasing complexity. We will briefly review the different levels at which regulation is known to occur in Aspergillus and the insights gained from the available genome sequences.

14.
Mol Cell Biol ; 32(13): 2585-95, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22547684

RESUMO

For a range of eukaryote transcripts, the initiation of degradation is coincident with the addition of a short pyrimidine tag at the 3' end. Previously, cytoplasmic mRNA tagging has been observed for human and fungal transcripts. We now report that Arabidopsis thaliana mRNA is subject to 3' tagging with U and C nucleotides, as in Aspergillus nidulans. Mutations that disrupt tagging, including A. nidulans cutA and a newly characterized gene, cutB, retard transcript degradation. Importantly, nonsense-mediated decay (NMD), a major checkpoint for transcript fidelity, elicits 3' tagging of transcripts containing a premature termination codon (PTC). Although PTC-induced transcript degradation does not require 3' tagging, subsequent dissociation of mRNA from ribosomes is retarded in tagging mutants. Additionally, tagging of wild-type and NMD-inducing transcripts is greatly reduced in strains lacking Upf1, a conserved NMD factor also required for human histone mRNA tagging. We argue that PTC-induced translational termination differs fundamentally from normal termination in polyadenylated transcripts, as it leads to transcript degradation and prevents rather than facilitates further translation. Furthermore, transcript deadenylation and the consequent dissociation of poly(A) binding protein will result in PTC-like termination events which recruit Upf1, resulting in mRNA 3' tagging, ribosome clearance, and transcript degradation.


Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Processamento de Terminações 3' de RNA , Ribossomos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sequência de Bases , Genes Fúngicos , Humanos , Modelos Biológicos , Mutação , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
15.
Mol Cell Biol ; 30(2): 460-9, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19901075

RESUMO

In eukaryotes, mRNA decay is generally initiated by the shortening of the poly(A) tail mediated by the major deadenylase complex Ccr4-Caf1-Not. The deadenylated transcript is then rapidly degraded, primarily via the decapping-dependent pathway. Here we report that in Aspergillus nidulans both the Caf1 and Ccr4 orthologues are functionally distinct deadenylases in vivo: Caf1 is required for the regulated degradation of specific transcripts, and Ccr4 is responsible for basal degradation. Intriguingly disruption of the Ccr4-Caf1-Not complex leads to deadenylation-independent decapping. Additionally, decapping is correlated with a novel transcript modification, addition of a CUCU sequence. A member of the nucleotidyltransferase superfamily, CutA, is required for this modification, and its disruption leads to a reduced rate of decapping and subsequent transcript degradation. We propose that 3' modification of adenylated mRNA, which is likely to represent a common eukaryotic process, primes the transcript for decapping and efficient degradation.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas Fúngicas/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Aspergillus nidulans/genética , Transcrição Gênica
16.
Mol Microbiol ; 62(2): 509-19, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17020584

RESUMO

A good model for gene regulation, requiring the organism to monitor a complex and changing environment and respond in a precise and rapid way, is nitrogen metabolism in Aspergillus nidulans. This involves co-ordinated expression of hundreds of genes, many dependent on the transcription factor AreA, which monitors the nitrogen state of the cell. AreA activity is in part modulated by differential degradation of its transcript in response to intracellular glutamine. Here we report that glutamine triggers synchronized degradation of a large subset of transcripts involved in nitrogen metabolism. Among these are all four genes involved in the assimilation of nitrate. Significantly, we show that two of these transcripts, niaD and niiA, are stabilized by intracellular nitrate, directly reinforcing transcriptional regulation. Glutamine-signalled degradation and the nitrate-dependent stabilization of the niaD transcript are effected at the level of deadenylation and are dependent on its 3' UTR. When glutamine and nitrate are both present, nitrate stabilization is predominant, ensuring that nitrate and the toxic intermediate nitrite are removed from the cell. Regulated transcript stability is therefore an integral part of the adaptive response. This represents the first example of distinct physiological signals competing to differentially regulate transcripts at the level of deadenylation.


Assuntos
Aspergillus nidulans/genética , Regulação Fúngica da Expressão Gênica/genética , Glutamina/metabolismo , Nitratos/metabolismo , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/metabolismo , Aspergillus nidulans/metabolismo , Northern Blotting , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Glutamina/farmacologia , Nitratos/farmacologia , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Estabilidade de RNA/efeitos dos fármacos , Ribonuclease H/genética , Ribonuclease H/metabolismo , Transdução de Sinais
17.
Eukaryot Cell ; 5(11): 1838-46, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16963627

RESUMO

An Aspergillus nidulans mutation, designated nmdA1, has been selected as a partial suppressor of a frameshift mutation and shown to truncate the homologue of the Saccharomyces cerevisiae nonsense-mediated mRNA decay (NMD) surveillance component Nmd2p/Upf2p. nmdA1 elevates steady-state levels of premature termination codon-containing transcripts, as demonstrated using mutations in genes encoding xanthine dehydrogenase (hxA), urate oxidase (uaZ), the transcription factor mediating regulation of gene expression by ambient pH (pacC), and a protease involved in pH signal transduction (palB). nmdA1 can also stabilize pre-mRNA (unspliced) and wild-type transcripts of certain genes. Certain premature termination codon-containing transcripts which escape NMD are relatively stable, a feature more in common with certain nonsense codon-containing mammalian transcripts than with those in S. cerevisiae. As in S. cerevisiae, 5' nonsense codons are more effective at triggering NMD than 3' nonsense codons. Unlike the mammalian situation but in common with S. cerevisiae and other lower eukaryotes, A. nidulans is apparently impervious to the position of premature termination codons with respect to the 3' exon-exon junction.


Assuntos
Aspergillus nidulans/genética , Códon sem Sentido , Mutação da Fase de Leitura , Estabilidade de RNA , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Aspergillus nidulans/metabolismo , Éxons , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Ácido Glutâmico/metabolismo , Humanos , Dados de Sequência Molecular , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Urato Oxidase/genética , Urato Oxidase/metabolismo , Xantina Oxidase/genética , Xantina Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA