Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(6): e17356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38853470

RESUMO

Seasonally abundant arthropods are a crucial food source for many migratory birds that breed in the Arctic. In cold environments, the growth and emergence of arthropods are particularly tied to temperature. Thus, the phenology of arthropods is anticipated to undergo a rapid change in response to a warming climate, potentially leading to a trophic mismatch between migratory insectivorous birds and their prey. Using data from 19 sites spanning a wide temperature gradient from the Subarctic to the High Arctic, we investigated the effects of temperature on the phenology and biomass of arthropods available to shorebirds during their short breeding season at high latitudes. We hypothesized that prolonged exposure to warmer summer temperatures would generate earlier peaks in arthropod biomass, as well as higher peak and seasonal biomass. Across the temperature gradient encompassed by our study sites (>10°C in average summer temperatures), we found a 3-day shift in average peak date for every increment of 80 cumulative thawing degree-days. Interestingly, we found a linear relationship between temperature and arthropod biomass only below temperature thresholds. Higher temperatures were associated with higher peak and seasonal biomass below 106 and 177 cumulative thawing degree-days, respectively, between June 5 and July 15. Beyond these thresholds, no relationship was observed between temperature and arthropod biomass. Our results suggest that prolonged exposure to elevated temperatures can positively influence prey availability for some arctic birds. This positive effect could, in part, stem from changes in arthropod assemblages and may reduce the risk of trophic mismatch.


Assuntos
Artrópodes , Biomassa , Estações do Ano , Temperatura , Animais , Regiões Árticas , Artrópodes/fisiologia , Mudança Climática , Cadeia Alimentar , Charadriiformes/fisiologia , Migração Animal
2.
Glob Chang Biol ; 28(3): 829-847, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34862835

RESUMO

In seasonal environments subject to climate change, organisms typically show phenological changes. As these changes are usually stronger in organisms at lower trophic levels than those at higher trophic levels, mismatches between consumers and their prey may occur during the consumers' reproduction period. While in some species a trophic mismatch induces reductions in offspring growth, this is not always the case. This variation may be caused by the relative strength of the mismatch, or by mitigating factors like increased temperature-reducing energetic costs. We investigated the response of chick growth rate to arthropod abundance and temperature for six populations of ecologically similar shorebirds breeding in the Arctic and sub-Arctic (four subspecies of Red Knot Calidris canutus, Great Knot C. tenuirostris and Surfbird C. virgata). In general, chicks experienced growth benefits (measured as a condition index) when hatching before the seasonal peak in arthropod abundance, and growth reductions when hatching after the peak. The moment in the season at which growth reductions occurred varied between populations, likely depending on whether food was limiting growth before or after the peak. Higher temperatures led to faster growth on average, but could only compensate for increasing trophic mismatch for the population experiencing the coldest conditions. We did not find changes in the timing of peaks in arthropod availability across the study years, possibly because our series of observations was relatively short; timing of hatching displayed no change over the years either. Our results suggest that a trend in trophic mismatches may not yet be evident; however, we show Arctic-breeding shorebirds to be vulnerable to this phenomenon and vulnerability to depend on seasonal prey dynamics.


Assuntos
Mudança Climática , Reprodução , Regiões Árticas , Estações do Ano , Temperatura
3.
Heredity (Edinb) ; 128(5): 364-376, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35246618

RESUMO

Genetic data are useful for detecting sudden population declines in species that are difficult to study in the field. Yet this indirect approach has its own drawbacks, including population structure, mutation patterns, and generation overlap. The ivory gull (Pagophila eburnea), a long-lived Arctic seabird, is currently suffering from rapid alteration of its primary habitat (i.e., sea ice), and dramatic climatic events affecting reproduction and recruitment. However, ivory gulls live in remote areas, and it is difficult to assess the population trend of the species across its distribution. Here we present complementary microsatellite- and SNP-based genetic analyses to test a recent bottleneck genetic signal in ivory gulls over a large portion of their distribution. With attention to the potential effects of population structure, mutation patterns, and sample size, we found no significant signatures of population decline worldwide. At a finer scale, we found a significant bottleneck signal at one location in Canada. These results were compared with predictions from simulations showing how generation time and generation overlap can delay and reduce the bottleneck microsatellite heterozygosity excess signal. The consistency of the results obtained with independent methods strongly indicates that the species shows no genetic evidence of an overall decline in population size. However, drawing conclusions related to the species' population trends will require a better understanding of the effect of age structure in long-lived species. In addition, estimates of the effective global population size of ivory gulls were surprisingly low (~1000 ind.), suggesting that the evolutionary potential of the species is not assured.


Assuntos
Charadriiformes , Animais , Regiões Árticas , Charadriiformes/genética , Demografia , Ecossistema , Camada de Gelo
4.
Oecologia ; 197(3): 661-674, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34657196

RESUMO

Droughts can affect invertebrate communities in wetlands, which can have bottom-up effects on the condition and survival of top predators. Shorebirds, key predators at coastal wetlands, have experienced widespread population declines and could be negatively affected by droughts. We explored, in detail, the effects of drought on multiple aspects of shorebird stopover and migration ecology by contrasting a year with average wet/dry conditions (2016) with a year with moderate drought (2017) at a major subarctic stopover site on southbound migration. We also examined the effects of drought on shorebird body mass during stopover across 14 years (historical: 1974-1982 and present-day: 2014-2018). For the detailed comparison of two years, in the year with moderate drought we documented lower invertebrate abundance at some sites, higher prey family richness in shorebird faecal samples, lower shorebird refuelling rates, shorter stopover durations for juveniles, and, for most species, a higher probability of making a subsequent stopover in North America after departing the subarctic, compared to the year with average wet/dry conditions. In the 14-year dataset, shorebird body mass tended to be lower in drier years. We show that even short-term, moderate drought conditions can negatively affect shorebird refuelling performance at coastal wetlands, which may carry-over to affect subsequent stopover decisions. Given shorebird population declines and predicted changes in the severity and duration of droughts with climate change, researchers should prioritize a better understanding of how droughts affect shorebird refuelling performance and survival.


Assuntos
Migração Animal , Áreas Alagadas , Animais , Secas , Ecologia , Invertebrados
5.
PLoS One ; 14(4): e0213930, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30943247

RESUMO

A recent study demonstrated that semipalmated sandpiper (Calidris pusilla) wing lengths have shortened from the 1980s to the present-day. We examined alternative and untested hypotheses for this change at an important stopover site, James Bay, Ontario, Canada. We evaluated morphometric patterns in wing length and bill length by age and sex, when possible, and assessed if wing shape has also changed during this time-period. We investigated patterns of morphological change in two additional Calidridine sandpipers, white-rumped sandpipers (Calidris fuscicollis) and least sandpipers (Calidris minutilla), to determine if shorter wing lengths are a widespread pattern in small sandpipers. We also examined allometric changes in wing and bill lengths to clarify if wing length declines were consistent with historical scaling relationships and indicative of a change in body size instead of only wing length change. We found that including sex and wing shape in analyses revealed important patterns in morphometric change for semipalmated sandpipers. Wing lengths declined for both sexes, but the magnitude of decline was smaller and not significant for males. Additionally, semipalmated sandpiper wings have become more convex, a shape that increases maneuverability in flight. Wing lengths, but not bill lengths, declined for most species and age classes, a pattern that was inconsistent with historical allometric scaling relationships. For juvenile semipalmated sandpipers, however, both bill and wing lengths declined according to historical scaling relationships, which could be a consequence of nutritional stress during development or a shift in the proportion of birds from smaller-sized, western breeding populations. Except for juvenile semipalmated sandpipers, we did not find evidence for an increase in the proportion of birds from different breeding populations at the stopover site. Given the wide, hemispheric distribution of these sandpipers throughout their annual cycles, our results, paired with those from a previous study, provide evidence for wide-spread reduction in wing lengths of Calidridine sandpipers since the 1980s. The shorter wing lengths and more convex wing shapes found in this study support the hypothesis that selection has favored more maneuverable wing morphology in small sandpipers.


Assuntos
Migração Animal/fisiologia , Charadriiformes/anatomia & histologia , Tamanho do Órgão/fisiologia , Seleção Genética/fisiologia , Asas de Animais/anatomia & histologia , Fatores Etários , Animais , Bico/anatomia & histologia , Tamanho Corporal/fisiologia , Charadriiformes/fisiologia , Feminino , Masculino , Ontário , Fatores Sexuais
6.
Physiol Biochem Zool ; 75(2): 200-8, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12024295

RESUMO

After a migratory flight of several thousand kilometers to their high arctic breeding grounds, red knots (Calidris canutus islandica, Scolopacidae) showed high baseline concentrations of plasma corticosterone (58 ng/mL). Such high baseline corticosterone levels may be conditional for the right behavioral and metabolic adjustments to environmental and social stresses that shorebirds experience on arrival in an unpredictable tundra breeding environment. Despite the high baseline levels of corticosterone, red knots still showed a marked stress response during the postarrival period, with corticosterone concentrations increasing significantly during a 60-min period of confinement. Baseline levels of corticosterone declined as the breeding season progressed. Red knots with brood patches, that is, birds that had completed egg laying and commenced incubation, had a reduced adrenocortical response to the stress of confinement compared with red knots with no, or with half-developed, brood patches. This is consistent with the idea that birds breeding in extreme environments with short breeding seasons may exhibit a decreased adrenocortical response to stressful events to prevent high corticosterone concentrations from inducing interruptions of reproductive behavior.


Assuntos
Aves/sangue , Aves/fisiologia , Corticosterona/sangue , Estresse Fisiológico/sangue , Estresse Fisiológico/fisiopatologia , Migração Animal , Animais , Regiões Árticas , Meio Ambiente , Feminino , Sistema Hipotálamo-Hipofisário/fisiologia , Masculino , Comportamento de Nidação/fisiologia , Reprodução , Caracteres Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA