Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 5: 10493, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25990870

RESUMO

The push for a semiconductor-based quantum information technology has renewed interest in the spin states and optical transitions of shallow donors in silicon, including the donor bound exciton transitions in the near-infrared and the Rydberg, or hydrogenic, transitions in the mid-infrared. The deepest group V donor in silicon, bismuth, has a large zero-field ground state hyperfine splitting, comparable to that of rubidium, upon which the now-ubiquitous rubidium atomic clock time standard is based. Here we show that the ground state hyperfine populations of bismuth can be read out using the mid-infrared Rydberg transitions, analogous to the optical readout of the rubidium ground state populations upon which rubidium clock technology is based. We further use these transitions to demonstrate strong population pumping by resonant excitation of the bound exciton transitions, suggesting several possible approaches to a solid-state atomic clock using bismuth in silicon, or eventually in enriched (28)Si.

2.
Nat Commun ; 4: 2477, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24051545

RESUMO

CeCoIn5 is a heavy fermion superconductor with strong similarities to the high-Tc cuprates, including quasi-two-dimensionality, proximity to antiferromagnetism and probable d-wave pairing arising from a non-Fermi-liquid normal state. Experiments allowing detailed comparisons of their electronic properties are of particular interest, but in most cases are difficult to realize, due to their very different transition temperatures. Here we use low-temperature microwave spectroscopy to study the charge dynamics of the CeCoIn5 superconducting state. The similarities to cuprates, in particular to ultra-clean YBa2Cu3O(y), are striking: the frequency and temperature dependence of the quasiparticle conductivity are instantly recognizable, a consequence of rapid suppression of quasiparticle scattering below T(c); and penetration-depth data, when properly treated, reveal a clean, linear temperature dependence of the quasiparticle contribution to superfluid density. The measurements also expose key differences, including prominent multiband effects and a temperature-dependent renormalization of the quasiparticle mass.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA