Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Protein Sci ; 31(12): e4491, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327064

RESUMO

Backbone-dependent rotamer libraries are commonly used to assign the side chain dihedral angles of amino acids when modeling protein structures. Most rotamer libraries are created by curating protein crystal structure data and using various methods to extrapolate the existing data to cover all possible backbone conformations. However, these rotamer libraries may not be suitable for modeling the structures of cyclic peptides and other constrained peptides because these molecules frequently sample backbone conformations rarely seen in the crystal structures of linear proteins. To provide backbone-dependent side chain information beyond the α-helix, ß-sheet, and PPII regions, we used explicit-solvent metadynamics simulations of model dipeptides to create a new rotamer library that has high coverage in the (ϕ, ψ) space. Furthermore, this approach can be applied to build high-coverage rotamer libraries for noncanonical amino acids. The resulting Metadynamics of Dipeptides for Rotamer Distribution (MEDFORD) rotamer library predicts the side chain conformations of high-resolution protein crystal structures with similar accuracy (~80%) to a state-of-the-art rotamer library. Our ability to test the accuracy of MEDFORD at predicting the side chain dihedral angles of amino acids in noncanonical backbone conformation is restricted by the limited structural data available for cyclic peptides. For the cyclic peptide data that are currently available, MEDFORD and the state-of-the-art rotamer library perform comparably. However, the two rotamer libraries indeed make different rotamer predictions in noncanonical (ϕ, ψ) regions. For noncanonical amino acids, the MEDFORD rotamer library predicts the χ1 values with approximately 75% accuracy.


Assuntos
Aminoácidos , Proteínas , Conformação Proteica , Proteínas/química , Aminoácidos/química , Dipeptídeos , Peptídeos Cíclicos
2.
Commun Chem ; 5(1): 128, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36697672

RESUMO

Establishing structure-activity relationships is crucial to understand and optimize the activity of peptide-based inhibitors of protein-protein interactions. Single alanine substitutions provide limited information on the residues that tolerate simultaneous modifications with retention of biological activity. To guide optimization of peptide binders, we use combinatorial peptide libraries of over 4,000 variants-in which each position is varied with either the wild-type residue or alanine-with a label-free affinity selection platform to study protein-ligand interactions. Applying this platform to a peptide binder to the oncogenic protein MDM2, several multi-alanine-substituted analogs with picomolar binding affinity were discovered. We reveal a non-additive substitution pattern in the selected sequences. The alanine substitution tolerances for peptide ligands of the 12ca5 antibody and 14-3-3 regulatory protein are also characterized, demonstrating the general applicability of this new platform. We envision that binary combinatorial alanine scanning will be a powerful tool for investigating structure-activity relationships.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA