Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 42(12): 2007-2014, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31451901

RESUMO

Simpler and biocompatible greener approaches for the assembly of nanoparticles (NPs) have been the focus lately which have minimum environmental damage and often entails the use of natural biomolecules to synthesize NPs. Such greener synthesis of nanoparticles has capitalized on the use of microbes, fungi, and plants using biological resources. In this study, Periplaneta americana (American cockroach) wings' extract (chitin-rich) is studied as a novel biomaterial for the first time to synthesize silver NPs (less than 50 nm); chitin is the second most abundant polymer after cellulose on earth. The physicochemical properties of these NPs were analyzed using UV-visible spectroscopy, X-ray diffraction, and transmission electron microscopy (TEM). The insecticidal effect of ensuing NPs was examined on the mortality of Aphis gossypii under laboratory conditions; 48 h after treatments of A. gossypii with silver NPs (100 µg/ml), the mortality rate in treated aphids was about 40% (an average), while an average percentage of losses in the control sample was about 10%. These results indicate the lethal effect of green-synthesized silver NPs on A. gossypii, in vitro. Greener synthesis of silver nanoparticles using American cockroach wings and their insecticidal activities.


Assuntos
Materiais Biocompatíveis/química , Inseticidas/farmacologia , Nanopartículas Metálicas/química , Prata/química , Asas de Animais/química , Animais , Celulose/química , Quitina/química , Química Verde/métodos , Microbiologia Industrial/métodos , Microscopia Eletrônica de Transmissão , Periplaneta/química , Polímeros/química , Espectrofotometria Ultravioleta , Difração de Raios X
2.
RSC Adv ; 11(6): 3288-3294, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35424300

RESUMO

Gold nanoparticles (AuNPs) have diverse applications in the diagnosis and treatment of ailments. This study describes an extremely simplified synthesis of AuNPs using antioxidant-rich pollen extract as a local natural source. Ultraviolet-visible (UV-vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) were used to characterize the synthesized AuNPs; strong UV-vis absorption at 534 nm confirmed their formation, the XRD pattern showed the presence of a crystalline structure, and TEM images showed them to be spherical nanoparticles with an average size of 9.3 ± 2.9 nm. As synthesized AuNPs remained stable for up to two months under laboratory conditions without any sedimentation or change in the absorption value, presumably due to the protection afforded by the capping agents from pollen. AuNPs revealed low toxicity effects on MCF-7 and HUVECs cell lines (with an IC50 value of ∼400 µg mL-1 for both the cell lines). The proposed method did not use any hazardous materials or high-energy consuming devices; thus this efficient protocol may be adapted for large-scale production using local resources.

3.
Iran J Biotechnol ; 18(1): e2196, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32884950

RESUMO

BACKGROUND: Nanoparticles (NPs) with unique chemical and physical properties can be used for therapeutic purposes because of their strong antimicrobial activates. Nanoparticles have been used as an antimicrobial agents to inhibit microbial growth. OBJECTIVES: In view of the strong antimicrobial activity of nanoparticles, the biogenic synthesis and leishmanicidal activity of rod-shaped zinc oxide (R-ZnO) nanoparticles was explored using Lilium ledebourii tuber extract. MATERIALS AND METHODS: The ensuing nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy and their leishmanicidal activity evaluated against the Leishmania major (L. major) by MTT assay. RESULTS: The R-ZnO nanoparticles displayed excellent leishmanicidal activity against the L. major as they significantly inhibited the amastigotes. The IC50 values of R-ZnO nanoparticles being ~ 0.001 mg.mL-1. R-ZnO nanoparticles can inhibit L. major growth in a dose-dependent manner under in vitro conditions. CONCLUSION: A simple, low-cost feasible and eco-friendly procedure was developed for biosynthesis of R-ZnO nanoparticles using natural bioresource that can inhibit human parasite cells growth in a dose-dependent manner under in vitro conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA