Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Res Toxicol ; 34(12): 2441-2449, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34793142

RESUMO

Triazole fungicides are widely used in agriculture that leads to pollution of freshwater ecosystems. The mechanisms of toxicity to fish by the triazole fungicide Topas that contains penconazole (1-[2-(2,4-dichlorophenyl)pentyl]-1H-1,2,4-triazole) have not been studied. The present study aimed to evaluate the effect of goldfish exposure for 96 h to the fungicide Topas at concentrations of 1.5, 15, or 25 mg/L on the plasma and liver biochemical parameters and blood hematological profile. Goldfish exposure to Topas decreased alanine and aspartate transaminase activity and increased lactate dehydrogenase activity in the liver. Plasma lactate dehydrogenase and alanine transaminase activities were elevated in fungicide-treated fish. Topas exposure also enhanced plasma glucose and triacylglycerol concentrations. In the liver, fungicide treatment decreased levels of glucose but elevated triacylglycerols, glycogen, and protein. The results indicate that acute exposure of goldfish to Topas induced strong metabolic perturbations and disruptions of metabolic parameters, suggesting that these could be used to assess sublethal or acute toxic effects of pesticides on aquatic species.


Assuntos
Fungicidas Industriais/toxicidade , Glucose/antagonistas & inibidores , Fígado/efeitos dos fármacos , Triazóis/toxicidade , Animais , Relação Dose-Resposta a Droga , Fungicidas Industriais/administração & dosagem , Fungicidas Industriais/química , Glucose/metabolismo , Carpa Dourada , Fígado/metabolismo , Estrutura Molecular , Triazóis/administração & dosagem , Triazóis/química
2.
Biomed Res Int ; 2021: 6647734, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34307664

RESUMO

Pancreatic enzyme replacement therapy (PERT) and fat predigestion are key in ensuring the optimal growth of patients with cystic fibrosis. Our study attempted to highlight differences between fat predigestion and conventional PERT on body composition of young pigs with exocrine pancreatic insufficiency (EPI). EPI and healthy pigs were fed with high-fat diet for six weeks. During the last two weeks of the study, all pigs received additional nocturnal alimentation with Peptamen AF (PAF) and were divided into three groups: H-healthy pigs receiving PAF; P-EPI pigs receiving PAF+PERT; and L-EPI pigs receiving PAF predigested with an immobilized microbial lipase. Additional nocturnal alimentation increased the body weight gain of EPI pigs with better efficacy in P pigs. Humerus length and area in pigs in groups L and P were lower than that observed in pigs in group H (p value 0.005-0.088). However, bone mineral density and strength were significantly higher in P and L as compared to that of H pigs (p value 0.0026-0.0739). The gut structure was improved in P pigs. The levels of neurospecific proteins measured in the brain were mainly affected in P and less in L pigs as compared to H pigs. The beneficial effects of the nocturnal feeding with the semielemental diet in the prevention of EPI pigs' growth/development retardation are differently modified by PERT or fat predigestion in terms of growth, bone properties, neurospecific protein distribution, and gut structure.


Assuntos
Dieta , Terapia de Reposição de Enzimas , Insuficiência Pancreática Exócrina/terapia , Comportamento Alimentar , Lipase/uso terapêutico , Pancrelipase/uso terapêutico , Animais , Astrócitos/metabolismo , Composição Corporal , Osso e Ossos/patologia , Trato Gastrointestinal/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Suínos , Aumento de Peso
3.
Front Med (Lausanne) ; 7: 569215, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330529

RESUMO

Limitations in efficacy and/or tolerance of currently available urate-lowering therapies (ULTs), such as oral xanthine oxidase inhibitors, uricosurics, and intravenous uricase agents contribute to the development of refractory gout. Renal excretion is the major route of uric acid elimination, but the intestinal tract plays an increasingly recognized role in urate homeostasis, particularly in chronic kidney disease (CKD) in which the renal elimination of urate is impaired. We targeted intestinal degradation of urate in vivo with ALLN-346, an orally administered, engineered urate oxidase, optimized for proteolytic stability, and activity in the gut. We tested ALLN-346 in uricase/urate oxidase deficient mice (URKO mice) with severe hyperuricemia, hyperuricosuria, and uric acid crystalline obstructive nephropathy. A total of 55 male and female URKO mice were used in the two consecutive studies. These seminal, proof-of-concept studies aimed to explore both short- (7-day) and long-term (19-day) effects of ALLN-346 on the reduction of plasma and urine urate. In both the 7- and 19-day studies, ALLN-346 oral therapy resulted in the normalization of urine uric acid excretion and a significant reduction of hyperuricemia by 44 and 28% when therapy was given with food over 24 h or was limited for up to 6 h, respectively. Fractional excretion of uric acid (FEUA) was normalized with ALLN-346 therapy. Oral enzyme therapy with engineered urate oxidase (ALLN-346) designed to degrade urate in the intestinal tract has the potential to reduce hyperuricemia and the renal burden of filtered urate in patients with hyperuricemia and gout with and without CKD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA