Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JAMA ; 293(7): 799-809, 2005 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-15713769

RESUMO

CONTEXT: The accurate identification and interpretation of germline mutations in mismatch repair genes in colorectal cancer cases is critical for clinical management. Current data suggest that mismatch repair mutations are highly heterogeneous and that many mutations are not detected when conventional DNA sequencing alone is used. OBJECTIVE: To evaluate the potential of conversion analysis compared with DNA sequencing alone to detect heterogeneous germline mutations in MLH1, MSH2, and MSH6 in colorectal cancer patients. DESIGN, SETTING, AND PARTICIPANTS: Multicenter study with patients who participate in the Colon Cancer Family Registry. Mutation analyses were performed in participant samples determined to have a high probability of carrying mismatch repair germline mutations. Samples from a total of 64 hereditary nonpolyposis colorectal cancer cases, 8 hereditary nonpolyposis colorectal cancer-like cases, and 17 cases diagnosed prior to age 50 years were analyzed from June 2002 to June 2003. MAIN OUTCOME MEASURES: Classification of family members as carriers or noncarriers of germline mutations in MLH1, MSH2, or MSH6; mutation data from conversion analysis compared with genomic DNA sequencing. RESULTS: Genomic DNA sequencing identified 28 likely deleterious exon mutations, 4 in-frame deletion mutations, 16 missense changes, and 22 putative splice site mutations. Conversion analysis identified all mutations detected by genomic DNA sequencing--plus an additional exon mutation, 12 large genomic deletions, and 1 exon duplication mutation--yielding an increase of 33% (14/42) in diagnostic yield of deleterious mutations. Conversion analysis also showed that 4 of 16 missense changes resulted in exon skipping in transcripts and that 17 of 22 putative splice site mutations affected splicing or mRNA transcript stability. Conversion analysis provided an increase of 56% (35/63) in the diagnostic yield of genetic testing compared with genomic DNA sequencing alone. CONCLUSIONS: The data confirm the heterogeneity of mismatch repair mutations and reveal that many mutations in colorectal cancer cases would be missed using conventional genomic DNA sequencing alone. Conversion analysis substantially increases the diagnostic yield of genetic testing for mismatch repair mutations in patients diagnosed as having colorectal cancer.


Assuntos
Pareamento Incorreto de Bases/genética , Neoplasias Colorretais/genética , Análise Mutacional de DNA , Proteínas de Ligação a DNA/genética , Conversão Gênica , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal , Southern Blotting , Proteínas de Transporte , Neoplasias Colorretais/patologia , Neoplasias Colorretais Hereditárias sem Polipose/genética , Neoplasias Colorretais Hereditárias sem Polipose/patologia , Mutação em Linhagem Germinativa , Humanos , Imuno-Histoquímica , Repetições de Microssatélites , Proteína 1 Homóloga a MutL , Proteína 2 Homóloga a MutS , Proteínas Nucleares
2.
Anal Biochem ; 375(2): 255-64, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18275835

RESUMO

Aberrant epidermal growth factor receptor (EGFR, ErbB1) signaling is implicated in cell transformation, motility, and invasion in a variety of cell types, and EGFR is the target of several anticancer drugs. However, the kinetics of EGFR signaling and the individual contributions of site-specific phosphorylation events remain largely unknown. A peptide-based, multiplex immunoassay approach was developed to simultaneously measure both total and phosphorylated protein in a single sample. The approach involves the proteolytic digestion of proteins prior to the isolation and quantitation of site-specific phosphorylation events within an individual protein. Quantitation of phosphorylated and total proteins, in picomolar to nanomolar concentrations, were interpolated from standard curves generated with synthetic peptides that correspond to the peptide targets used in the immunoassays. In this study, a bead-based, nine-plex immunoassay measuring total and phosphorylated protein was constructed to measure temporal, site-specific phosphorylation of key members of the EGFR pathway (ErbB1 receptor, MEK1, MEK2, ERK1, and ERK2) in A431 cells stimulated with epidermal growth factor. The effect of MEK inhibition on this pathway was determined using a known MEK kinase inhibitor, SL327. The results reported herein are the first quantitative measurements of site-specific phosphorylation events and total proteins in a single sample, at the same time representing a new paradigm for standardized protein and phosphorylation analysis using multiplexed, peptide-based, sandwich immunoassays.


Assuntos
Fator de Crescimento Epidérmico/imunologia , Fator de Crescimento Epidérmico/metabolismo , Imunoensaio/métodos , Proteínas Quinases Ativadas por Mitógeno/imunologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Peptídeos/imunologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Fator de Crescimento Epidérmico/análise , Epitopos/imunologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/análise , Dados de Sequência Molecular , Fosforilação , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA