Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 175
Filtrar
Mais filtros

Coleções SMS-SP
Intervalo de ano de publicação
1.
Chem Rev ; 120(19): 10547-10607, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32407108

RESUMO

Bioprinting techniques have been flourishing in the field of biofabrication with pronounced and exponential developments in the past years. Novel biomaterial inks used for the formation of bioinks have been developed, allowing the manufacturing of in vitro models and implants tested preclinically with a certain degree of success. Furthermore, incredible advances in cell biology, namely, in pluripotent stem cells, have also contributed to the latest milestones where more relevant tissues or organ-like constructs with a certain degree of functionality can already be obtained. These incredible strides have been possible with a multitude of multidisciplinary teams around the world, working to make bioprinted tissues and organs more relevant and functional. Yet, there is still a long way to go until these biofabricated constructs will be able to reach the clinics. In this review, we summarize the main bioprinting activities linking them to tissue and organ development and physiology. Most bioprinting approaches focus on mimicking fully matured tissues. Future bioprinting strategies might pursue earlier developmental stages of tissues and organs. The continuous convergence of the experts in the fields of material sciences, cell biology, engineering, and many other disciplines will gradually allow us to overcome the barriers identified on the demanding path toward manufacturing and adoption of tissue and organ replacements.


Assuntos
Bioimpressão , Modelos Biológicos , Impressão Tridimensional , Engenharia Tecidual , Humanos
2.
J Sport Rehabil ; 31(2): 191-198, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856534

RESUMO

CONTEXT: Volleyball and handball players have usually been studied collectively as "overhead athletes," since throwing present similarities in the proximal to distal movement sequencing and upper limb joints ranges of motion. However, each sport presents specificities in the objectives when accelerating the ball and a variety of possible throwing techniques. Therefore, it is expected there may be differences in the shoulder and upper body physical performance between sports. OBJECTIVE: The aim of this study was to determine if there are differences in shoulder muscle strength and upper body field performance tests between volleyball and handball athletes. DESIGN: Cross-sectional. METHODS: Ninety-nine volleyball and handball female athletes aged between 13 and 20 years were evaluated for isometric shoulder abductor and rotator strength (handheld dynamometer) and upper body field performance tests: Y Balance Test-Upper Quarter, modified Closed Kinetic Chain Upper-Extremity Stability Test, and unilateral and bilateral Seated Medicine Ball Throw. RESULTS: Handball athletes presented greater shoulder internal rotation strength (between-group difference: 2.84; effect size 0.70), higher medial (between-group difference: 9.54; effect size 0.90), superolateral (between-group differences: 8.9; effect size 0.68), and composite scores (between-group difference 5.7; effect size 0.75) of the Y Balance Test-Upper Quarter and higher unilateral (between-group difference: 41.92; effect size 0.91) and bilateral (between-group difference: 46.11; effect size 0.83) Seated Medicine Ball Throw performance. Groups were not different for Closed Kinetic Chain Upper-Extremity Stability Test, external rotation, and abduction isometric strength. CONCLUSION: Our findings suggest that young female handball athletes present greater internal rotator strength and better performance in Y Balance Test-Upper Quarter and Seated Medicine Ball Throw compared to volleyball players. These differences may be related to the different demands required in the throwing movements performed in each sport and should be considered when assessing these populations.


Assuntos
Articulação do Ombro , Voleibol , Adolescente , Adulto , Atletas , Estudos Transversais , Feminino , Humanos , Força Muscular , Amplitude de Movimento Articular , Ombro , Extremidade Superior , Adulto Jovem
3.
Int J Mol Sci ; 22(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918892

RESUMO

Various hydrogel systems have been developed as biomaterial inks for bioprinting, including natural and synthetic polymers. However, the available biomaterial inks, which allow printability, cell viability, and user-defined customization, remains limited. Incorporation of biological extracellular matrix materials into tunable synthetic polymers can merge the benefits of both systems towards versatile materials for biofabrication. The aim of this study was to develop novel, cell compatible dual-component biomaterial inks and bioinks based on poly(vinyl alcohol) (PVA) and solubilized decellularized cartilage matrix (SDCM) hydrogels that can be utilized for cartilage bioprinting. In a first approach, PVA was modified with amine groups (PVA-A), and mixed with SDCM. The printability of the PVA-A/SDCM formulations cross-linked by genipin was evaluated. On the second approach, the PVA was functionalized with cis-5-norbornene-endo-2,3-dicarboxylic anhydride (PVA-Nb) to allow an ultrafast light-curing thiol-ene cross-linking. Comprehensive experiments were conducted to evaluate the influence of the SDCM ratio in mechanical properties, water uptake, swelling, cell viability, and printability of the PVA-based formulations. The studies performed with the PVA-A/SDCM formulations cross-linked by genipin showed printability, but poor shape retention due to slow cross-linking kinetics. On the other hand, the PVA-Nb/SDCM showed good printability. The results showed that incorporation of SDCM into PVA-Nb reduces the compression modulus, enhance cell viability, and bioprintability and modulate the swelling ratio of the resulted hydrogels. Results indicated that PVA-Nb hydrogels containing SDCM could be considered as versatile bioinks for cartilage bioprinting.


Assuntos
Materiais Biocompatíveis , Bioimpressão , Álcool de Polivinil , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais , Animais , Bioimpressão/métodos , Matriz Óssea , Cartilagem/química , Bovinos , Técnicas de Cultura de Células , Técnicas de Química Sintética , Reagentes de Ligações Cruzadas , Matriz Extracelular , Hidrogéis/química , Ressonância Magnética Nuclear Biomolecular , Álcool de Polivinil/síntese química , Álcool de Polivinil/química
4.
Small ; 16(34): e2002258, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32656904

RESUMO

Despite numerous advances in the field of tissue engineering and regenerative medicine, monitoring the formation of tissue regeneration and its metabolic variations during culture is still a challenge and mostly limited to bulk volumetric assays. Here, a simple method of adding capsules-based optical sensors in cell-seeded 3D scaffolds is presented and the potential of these sensors to monitor the pH changes in space and time during cell growth is demonstrated. It is shown that the pH decreased over time in the 3D scaffolds, with a more prominent decrease at the edges of the scaffolds. Moreover, the pH change is higher in 3D scaffolds compared to monolayered 2D cell cultures. The results suggest that this system, composed by capsules-based optical sensors and 3D scaffolds with predefined geometry and pore architecture network, can be a suitable platform for monitoring pH variations during 3D cell growth and tissue formation. This is particularly relevant for the investigation of 3D cellular microenvironment alterations occurring both during physiological processes, such as tissue regeneration, and pathological processes, such as cancer evolution.


Assuntos
Células-Tronco Mesenquimais , Diferenciação Celular , Concentração de Íons de Hidrogênio , Engenharia Tecidual , Alicerces Teciduais
5.
Int J Mol Sci ; 21(10)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32455722

RESUMO

Endocrine disruptors (EDs) are chemicals that contribute to health problems by interfering with the physiological production and target effects of hormones, with proven impacts on a number of endocrine systems including the thyroid gland. Exposure to EDs has also been associated with impairment of the reproductive system and incidence in occurrence of obesity, type 2 diabetes, and cardiovascular diseases during ageing. SCREENED aims at developing in vitro assays based on rodent and human thyroid cells organized in three different three-dimensional (3D) constructs. Due to different levels of anatomical complexity, each of these constructs has the potential to increasingly mimic the structure and function of the native thyroid gland, ultimately achieving relevant features of its 3D organization including: 1) a 3D organoid based on stem cell-derived thyrocytes, 2) a 3D organoid based on a decellularized thyroid lobe stromal matrix repopulated with stem cell-derived thyrocytes, and 3) a bioprinted organoid based on stem cell-derived thyrocytes able to mimic the spatial and geometrical features of a native thyroid gland. These 3D constructs will be hosted in a modular microbioreactor equipped with innovative sensing technology and enabling precise control of cell culture conditions. New superparamagnetic biocompatible and biomimetic particles will be used to produce "magnetic cells" to support precise spatiotemporal homing of the cells in the 3D decellularized and bioprinted constructs. Finally, these 3D constructs will be used to screen the effect of EDs on the thyroid function in a unique biological sex-specific manner. Their performance will be assessed individually, in comparison with each other, and against in vivo studies. The resulting 3D assays are expected to yield responses to low doses of different EDs, with sensitivity and specificity higher than that of classical 2D in vitro assays and animal models. Supporting the "Adverse Outcome Pathway" concept, proteogenomic analysis and biological computational modelling of the underlying mode of action of the tested EDs will be pursued to gain a mechanistic understanding of the chain of events from exposure to adverse toxic effects on thyroid function. For future uptake, SCREENED will engage discussion with relevant stakeholder groups, including regulatory bodies and industry, to ensure that the assays will fit with purposes of ED safety assessment. In this project review, we will briefly discuss the current state of the art in cellular assays of EDs and how our project aims at further advancing the field of cellular assays for EDs interfering with the thyroid gland.


Assuntos
Disruptores Endócrinos/toxicidade , Glândula Tireoide/efeitos dos fármacos , Testes de Toxicidade/métodos , Técnicas de Cultura/métodos , Humanos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Fatores Sexuais , Glândula Tireoide/citologia , Glândula Tireoide/metabolismo , Testes de Toxicidade/normas
6.
J Mater Sci Mater Med ; 30(6): 61, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31127377

RESUMO

In vivo experiments are accompanied by ethical issues, including sacrificing a large number of animals as well as large costs. A new in vivo 3D screening system was developed to reduce the number of required animals without compromising the results. The present pilot study examined a multiwell array system in combination with three different collagen-based biomaterials (A, B and C) using subcutaneous implantation for 10 days and histological and histomorphometrical evaluations. The tissue reaction towards the device itself was dominated by mononuclear cells. However, three independent biomaterial-specific tissue reactions were observed in three chambers. The results showed a mononuclear cell-based tissue reaction in one chamber (A) and foreign body reaction by multinucleated giant cells in the other two chambers (B and C). Statistical analysis showed a significantly higher number of multinucleated giant cells in cases B and C than in case A (A vs. B; ***P < 0.001), (A vs. C; P < 0.01). These outcomes were comparable to previously published observations with conventional biomaterial implantation. The present data lead to the conclusion that this 3D screening system could be an alternative tool to enhance the effectiveness of in vivo experiments, thus offering a more economic strategy to screen biomaterial-related cellular reactions, while saving animals, without influencing the final outcome.


Assuntos
Materiais Biocompatíveis/química , Técnicas de Cultura de Células/instrumentação , Colágeno/química , Reação a Corpo Estranho , Animais , Células Gigantes/citologia , Sistema Imunitário , Inflamação , Camundongos , Projetos Piloto , Pele/metabolismo , Suínos , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica
7.
Biomacromolecules ; 19(8): 3390-3400, 2018 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-29939754

RESUMO

Bioprinting is a powerful technique that allows precise and controlled 3D deposition of biomaterials in a predesigned, customizable, and reproducible manner. Cell-laden hydrogel ("bioink") bioprinting is especially advantageous for tissue engineering applications as multiple cells and biomaterial compositions can be selectively dispensed to create spatially well-defined architectures. Despite this promise, few hydrogel systems are easily available and suitable as bioinks, with even fewer systems allowing for molecular design of mechanical and biological properties. In this study, we report the development of a norbornene functionalized alginate system as a cell-laden bioink for extrusion-based bioprinting, with a rapid UV-induced thiol-ene cross-linking mechanism that avoids acrylate kinetic chain formation. The mechanical and swelling properties of the hydrogels are tunable by varying the concentration, length, and structure of dithiol PEG cross-linkers and can be further modified by postprinting secondary cross-linking with divalent ions such as calcium. The low concentrations of alginate needed (<2 wt %), coupled with their rapid in situ gelation, allow both the maintenance of high cell viability and the ability to fabricate large multilayer or multibioink constructs with identical bioprinting conditions. The modularity of this bioink platform design enables not only the rational design of materials properties but also the gel's biofunctionality (as shown via RGD attachment) for the expected tissue-engineering application. This modularity enables the creation of multizonal and multicellular constructs utilizing a chemically similar bioink platform. Such tailorable bioink platforms will enable increased complexity in 3D bioprinted constructs.


Assuntos
Alginatos/química , Bioimpressão/métodos , Hidrogéis/química , Tinta , Animais , Cálcio/química , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Fibroblastos/efeitos dos fármacos , Hidrogéis/efeitos adversos , Camundongos , Norbornanos/química , Compostos de Enxofre/química
8.
J Mater Sci Mater Med ; 29(5): 63, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736776

RESUMO

The external auditory canal (EAC) is an osseocartilaginous structure extending from the auricle to the eardrum, which can be affected by congenital, inflammatory, and neoplastic diseases, thus reconstructive materials are needed. Current biomaterial-based approaches for the surgical reconstruction of EAC posterior wall still suffer from resorption (biological) and extrusion (synthetic). In this study, 3D fiber deposited scaffolds based on poly(ethylene oxide terephthalate)/poly(butylene terephthalate) were designed and fabricated to replace the EAC wall. Fiber diameter and scaffold porosity were optimized, leading to 200 ± 33 µm and 55% ± 5%, respectively. The mechanical properties were evaluated, resulting in a Young's modulus of 25.1 ± 7.0 MPa. Finally, the EAC scaffolds were tested in vitro with osteo-differentiated human mesenchymal stromal cells (hMSCs) with different seeding methods to produce homogeneously colonized replacements of interest for otologic surgery. This study demonstrated the fabrication feasibility of EAC wall scaffolds aimed to match several important requirements for biomaterial application to the ear under the Tissue Engineering paradigm, including shape, porosity, surface area, mechanical properties and favorable in vitro interaction with osteoinduced hMSCs. This study demonstrated the fabrication feasibility of outer ear canal wall scaffolds via additive manufacturing. Aimed to match several important requirements for biomaterial application to ear replacements under the Tissue Engineering paradigm, including shape, porosity and pore size, surface area, mechanical properties and favorable in vitro interaction with osteo-differentiated mesenchymal stromal cells.


Assuntos
Materiais Biocompatíveis/química , Meato Acústico Externo/citologia , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Materiais Biocompatíveis/farmacologia , Células Sanguíneas/citologia , Células Sanguíneas/efeitos dos fármacos , Células Sanguíneas/fisiologia , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Regeneração Tecidual Guiada/instrumentação , Regeneração Tecidual Guiada/métodos , Humanos , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Modelos Anatômicos , Polímeros/síntese química , Polímeros/química , Polímeros/farmacologia , Impressão Tridimensional , Engenharia Tecidual/instrumentação
9.
STAR Protoc ; 5(4): 103332, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39446581

RESUMO

External magnetic fields can regulate cellular responses. Here, we present a protocol to fabricate magnetic constructs by 4D bioprinting with shape-morphing properties using silk fibroin-gelatin bioinks for articular cartilage regeneration. We illustrate the steps for magnetic bioink formulation, bioprinting, and chondrogenic induction of human bone marrow mesenchymal stem/stromal cells. We detail the steps to actuate the constructs using an external magnetic field and then characterize chondrogenesis. Magnetic field actuation may be helpful for mechanically activating constructs for articular cartilage regeneration. For complete details on the use and execution of this protocol, please refer to Chakraborty et al.1.

10.
J Bodyw Mov Ther ; 37: 392-398, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38432835

RESUMO

BACKGROUND: In the squat movement, the use of constant resistance (CR) generates greater compression and shear forces close to 90° of knee flexion, increasing joint overload. However, when used variable resistance (VR) there is no consensus about the effect of knee joint load. The aim of this study was to compare knee torques using constant or variable resistance during the squat exercise. METHODS: Twenty-one healthy male subjects (mean age, 24 [SD, 3] years; height, 1.76 [SD, 0.04] m), who practice squats during strength training routine. Were simultaneously record data from the platform force and tridimensional kinematic to obtain torques around knee. 15 repetitions were performed up to maximum knee flexion with the use of variable (RV) or constant (CR) resistance in a single session. RESULTS: Significant differences regarding the angles only in the sagittal plane at the end of the ascending phase of the squat, with less knee extension in the VR condition. In the sagittal and frontal planes, lower values of extensor and abductor torque were found in the VR condition at the angles of greater knee flexion. CONCLUSION: The use of variable resistance compared to constant resistance seems to be an alternative to be considered when the objective is to minimize the internal loads on the knee joint in exercises such as the squat in amplitudes of greater flexion. This study indicated that VR helps subjects who are learning the squat movement, enabling the application of this knowledge in physical therapy or physical training clinics.


Assuntos
Articulação do Joelho , Postura , Adulto , Humanos , Masculino , Adulto Jovem , Exercício Físico , Terapia por Exercício , Movimento
11.
Bioact Mater ; 38: 109-123, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38699239

RESUMO

Approximately 740 million symptomatic patients are affected by otitis media every year. Being an inflammatory disease affecting the middle ear, it is one of the primary causes of tympanic membrane (TM) perforations, often resulting in impaired hearing abilities. Antibiotic therapy using broad-spectrum fluoroquinolones, such as ciprofloxacin (CIP), is frequently employed and considered the optimal route to treat otitis media. However, patients often get exposed to high dosages to compensate for the low drug concentration reaching the affected site. Therefore, this study aims to integrate tissue engineering with drug delivery strategies to create biomimetic scaffolds promoting TM regeneration while facilitating a localized release of CIP. Distinct electrospinning (ES) modalities were designed in this regard either by blending CIP into the polymer ES solution or by incorporating nanoparticles-based co-ES/electrospraying. The combination of these modalities was investigated as well. A broad range of release kinetic profiles was achieved from the fabricated scaffolds, thereby offering a wide spectrum of antibiotic concentrations that could serve patients with diverse therapeutic needs. Furthermore, the incorporation of CIP into the TM patches demonstrated a favorable influence on their resultant mechanical properties. Biological studies performed with human mesenchymal stromal cells confirmed the absence of any cytotoxic or anti-proliferative effects from the released antibiotic. Finally, antibacterial assays validated the efficacy of CIP-loaded scaffolds in suppressing bacterial infections, highlighting their promising relevance for TM applications.

12.
Materials (Basel) ; 17(19)2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39410251

RESUMO

Polymeric composites are prone to undergoing damage, such as microcracks, during their operation, which can ultimately lead to catastrophic failure. To contradict such a problem, efforts have been carried out, by the scientific community, towards developing self-healing composites that, by mimicking biological systems, can autonomously and prematurely repair flaws, extending the durability and improving the security of materials. The present review explores the progress made in this area, focusing on extrinsic self-healing methods, as these can be employed to a variety of materials. Reservoir-based techniques, which resort to capsules, hollow fibers or microvascular networks, and thermoplastic-based ones are overviewed, prioritizing innovative approaches made in recent years. At last, promising practical applications for self-healing composites are highlighted and future challenges and opportunities are pointed out.

13.
Mater Today Bio ; 29: 101291, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39435373

RESUMO

Hybrid 3D constructs combining different structural components afford unique opportunities to engineer functional tissues. Creating functional microvascular networks within these constructs is crucial for promoting integration with host vessels and ensuring successful engraftment. Here, we present a hybrid 3D system in which poly (ethylene oxide terephthalate)/poly (butylene terephthalate) fibrous scaffolds are combined with pectin hydrogels to provide internal topography and guide the formation of microvascular beds. The sequence/method of seeding human endothelial cells (EC) and mesenchymal stromal cells (MSC) into the system had a significant impact on microvessel formation. Optimal results were obtained when EC were directly seeded onto the fibrous scaffold, followed by the addition of hydrogel-embedded MSC. This approach facilitated the development of highly oriented microvascular networks along the fibers. These networks were lumenized, supported by a basement membrane, and stabilized by pericyte-like cells, persisting for at least 28 days in vitro. Furthermore, culture under pro-angiogenic and osteoinductive conditions induced MSC osteogenic differentiation without impairing microvessel formation. Upon subcutaneous implantation in mice, the pre-vascularized constructs were infiltrated by host vessels, and human microvessels were still present after 2 weeks. Overall, the proposed hybrid 3D system, combined with an optimized cell-seeding protocol, offers an effective approach for directing the formation of robust and geometrically oriented microvessels, making it promising for tissue engineering applications.

14.
Adv Healthc Mater ; : e2400807, 2024 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-39152919

RESUMO

Chronic kidney disease (CKD) leads to a gradual loss of kidney function, with fibrosis as pathological endpoint, which is characterized by extracellular matrix (ECM) deposition and remodeling. Traditionally, in vivo models are used to study interstitial fibrosis, through histological characterization of biopsy tissue. However, ethical considerations and the 3Rs (replacement, reduction, and refinement) regulations emphasizes the need for humanized 3D in vitro models. This study introduces a bioprinted in vitro model which combines primary human cells and decellularized and partially digested extracellular matrix (ddECM). A protocol was established to decellularize kidney pig tissue and the ddECM was used to encapsulate human renal cells. To investigate fibrosis progression, cells were treated with transforming growth factor beta 1 (TGF-ß1), and the mechanical properties of the ddECM hydrogel were modulated using vitamin B2 crosslinking. The bioprinting perfusable model replicates the renal tubulointerstitium. Results show an increased Young's modulus over time, together with the increase of ECM components and cell dedifferentiation toward myofibroblasts. Multiple fibrotic genes resulted upregulated, and the model closely resembled fibrotic human tissue in terms of collagen deposition. This 3D bioprinted model offers a more physiologically relevant platform for studying kidney fibrosis, potentially improving disease progression research and high-throughput drug screening.

15.
Small Methods ; : e2400857, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38970553

RESUMO

Protein-based hydrogels have great potential to be used as bioinks for biofabrication-driven tissue regeneration strategies due to their innate bioactivity. Nevertheless, their use as bioinks in conventional 3D bioprinting is impaired due to their intrinsic low viscosity. Using embedding bioprinting, a liquid bioink is printed within a support that physically holds the patterned filament. Inspired by the recognized microencapsulation technique complex coacervation, crystal self-healing embedding bioprinting (CLADDING) is introduced based on a highly transparent crystal supporting bath. The suitability of distinct classes of gelatins is evaluated (i.e., molecular weight distribution, isoelectric point, and ionic content), as well as the formation of gelatin-gum arabic microparticles as a function of pH, temperature, solvent, and mass ratios. Characterizing and controlling this parametric window resulted in high yields of support bath with ideal self-healing properties for interaction with protein-based bioinks. This support bath achieved transparency, which boosted light permeation within the bath. Bioprinted constructs fully composed of platelet lysates encapsulating a co-culture of human mesenchymal stromal cells and endothelial cells are obtained, demonstrating a high-dense cellular network with excellent cell viability and stability over a month. CLADDING broadens the spectrum of photocrosslinkable materials with extremely low viscosity that can now be bioprinted with sensitive cells without any additional support.

16.
Pharmaceuticals (Basel) ; 17(8)2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39204125

RESUMO

Interindividual variation in drug efficacy and toxicity is a significant problem, potentially leading to adverse clinical and economic public health outcomes. While pharmacogenetics and pharmacogenomics have long been considered the primary causes of such heterogeneous responses, pharmacomicrobiomics has recently gained attention. The microbiome, a community of microorganisms living in or on the human body, is a critical determinant of drug response and toxicity. Factors such as diet, lifestyle, exposure to xenobiotics, antibiotics use, illness, and genetics can influence the composition of the microbiota. Changes in the intestinal microbiota are particularly influential in drug responsiveness, especially in cancer chemotherapy. The microbiota can modulate an individual's response to a drug, affecting its bioavailability, clinical effect, and toxicity, affecting treatment outcomes and patient quality of life. For instance, the microbiota can convert drugs into active or toxic metabolites, influencing their efficacy and side effects. Alternatively, chemotherapy can also alter the microbiota, creating a bidirectional interplay. Probiotics have shown promise in modulating the microbiome and ameliorating chemotherapy side effects, highlighting the potential for microbiota-targeted interventions in improving cancer treatment outcomes. This opinion paper addresses how environmental factors and chemotherapy-induced dysbiosis impact cancer chemotherapy gastrointestinal toxicity.

17.
Biomater Adv ; 148: 213371, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931083

RESUMO

Oral health is essential for a good overall health. Dento-alveolar conditions have a high prevalence, ranging from tooth decay periodontitis to alveolar bone resorption. However, oral tissues exhibit a limited regenerative capacity, and full recovery is challenging. Therefore, regenerative therapies for dento-alveolar tissue (e.g., alveolar bone, periodontal membrane, dentin-pulp complex) have gained much attention, and novel approaches have been proposed in recent decades. This review focuses on the cells, biomaterials and the biofabrication methods used to develop therapies for tooth root bioengineering. Examples of the techniques covered are the multitude of additive manufacturing techniques and bioprinting approaches used to create scaffolds or tissue constructs. Furthermore, biomaterials and stem cells utilized during biofabrication will also be described for different target tissues. As these new therapies gradually become a reality in the lab, the translation to the clinic is still minute, with a further need to overcome multiple challenges and broaden the clinical application of these alternatives.


Assuntos
Perda do Osso Alveolar , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Materiais Biocompatíveis/uso terapêutico , Raiz Dentária , Células-Tronco
18.
Macromol Biosci ; : e2300440, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37997523

RESUMO

Chronic kidney disease (CKD) ranks as the twelfth leading cause of death worldwide with limited treatment options. The development of in vitro models replicating defined segments of the kidney functional units, the nephrons, in a physiologically relevant and reproducible manner can facilitate drug testing. The aim of this study was to produce an in vitro organ-on-a-chip platform with extrusion-based three-dimensional (3D) printing. The manufacturing of the tubular platform was produced by printing sacrificial fibers with varying diameters, providing a suitable structure for cell adhesion and proliferation. The chip platform was seeded with primary murine tubular epithelial cells and human umbilical vein endothelial cells. The effect of channel geometry, its reproducibility, coatings for cell adhesion, and specific cell markers were investigated. The developed chip presents single and dual channels, mimicking segments of a renal tubule and the capillary network, together with an extracellular matrix gel analogue placed in the middle of the two channels, envisioning the renal tubulointerstitium in vitro. The 3D printed platform enables perfusable circular cross-section channels with fully automated, rapid, and reproducible manufacturing processes at low costs. This kidney tubulointerstitium on-a-chip provides the first step toward the production of more complex in vitro models for drug testing.

19.
ACS Biomater Sci Eng ; 9(3): 1320-1331, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36848685

RESUMO

Extrusion-based bioprinting is one of the most widespread technologies due to its affordability, wide range of processable materials, and ease of use. However, the formulation of new inks for this technique is based on time-consuming trial-and-error processes to establish the optimal ink composition and printing parameters. Here, a dynamic printability window was modeled for the assessment of the printability of polysaccharide blend inks of alginate and hyaluronic acid with the intent to build a versatile predictive tool to speed up the testing procedures. The model considers both the rheological properties of the blends (viscosity, shear thinning behavior, and viscoelasticity) and their printability (in terms of extrudability and the ability of forming a well-defined filament and detailed geometries). By imposing some conditions on the model equations, it was possible to define empirical bands in which the printability is ensured. The predictive capability of the built model was successfully verified on an untested blend of alginate and hyaluronic acid chosen to simultaneously optimize the printability index and minimize the size of the deposited filament.


Assuntos
Bioimpressão , Tinta , Bioimpressão/métodos , Ácido Hialurônico , Alginatos , Impressão Tridimensional
20.
ACS Biomater Sci Eng ; 9(8): 5006-5014, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37490420

RESUMO

Coronary artery disease affects millions worldwide. Bypass surgery remains the gold standard; however, autologous tissue is not always available. Hence, the need for an off-the-shelf graft to treat these patients remains extremely high. Using melt spinning, we describe here the fabrication of tubular scaffolds composed of microfibers aligned in the circumferential orientation mimicking the organized extracellular matrix in the tunica media of arteries. By variation of the translational extruder speed, the angle between fibers ranged from 0 to ∼30°. Scaffolds with the highest angle showed the best performance in a three-point bending test. These constructs could be bent up to 160% strain without kinking or breakage. Furthermore, when liquid was passed through the scaffolds, no leakage was observed. Suturing of native arteries was successful. Mesenchymal stromal cells were seeded on the scaffolds and differentiated into vascular smooth muscle-like cells (vSMCs) by reduction of serum and addition of transforming growth factor beta 1 and ascorbic acid. The scaffolds with a higher angle between fibers showed increased expression of vSMC markers alpha smooth muscle actin, calponin, and smooth muscle protein 22-alpha, whereas a decrease in collagen 1 expression was observed, indicating a positive contractile phenotype. Endothelial cells were seeded on the repopulated scaffolds and formed a tightly packed monolayer on the luminal side. Our study shows a one-step fabrication for ECM-mimicking scaffolds with good handleability, leak-free property, and suturability; the excellent biocompatibility allowed the growth of a bilayered construct. Future work will explore the possibility of using these scaffolds as vascular conduits in in vivo settings.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Células Endoteliais , Matriz Extracelular/metabolismo , Diferenciação Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA