Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Acc Chem Res ; 56(13): 1850-1861, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37352016

RESUMO

ConspectusSensors are ubiquitous, and their importance is only going to increase across many areas of modern technology. In this respect, hydrogen gas (H2) sensors are no exception since they allow mitigation of the inherent safety risks associated with mixtures of H2 and air. The deployment of H2 technologies is rapidly accelerating in emerging energy, transport, and green steel-making sectors, where not only safety but also process monitoring sensors are in high demand. To meet this demand, cost-effective and scalable routes for mass production of sensing materials are required. Here, the state-of-the-art often resorts to processes derived from the microelectronics industry where surface-based micro- and nanofabrication are the methods of choice and where (H2) sensor manufacturing is no exception.In this Account, we discuss how our recent efforts to develop sensors based on plasmonic plastics may complement the current state-of-the-art. We explore a new H2 sensor paradigm, established through a series of recent publications, that combines (i) the plasmonic optical H2 detection principle and (ii) bulk-processed nanocomposite materials. In particular, plasmonic plastic nanocomposite sensing materials are described that comprise plasmonic H2-sensitive colloidally synthesized nanoparticles dispersed in a polymer matrix and enable the additive manufacturing of H2 sensors in a cost-effective and scalable way. We first discuss the concept of plasmonic plastic nanocomposite materials for the additive manufacturing of an active plasmonic sensing material on the basis of the three key components that require individual and concerted optimization: (i) the plasmonic sensing metal nanoparticles, (ii) the surfactant/stabilizer molecules on the nanoparticle surface from colloidal synthesis, and (iii) the polymer matrix. We then introduce the working principle of plasmonic H2 detection, which relies on the selective absorption of H species into hydride-forming metal nanoparticles that, in turn, induces distinct changes in their optical plasmonic signature in proportion to the H2 concentration in the local atmosphere. Subsequently, we assess the roles of the key components of a plasmonic plastic for H2 sensing, where we have established that (i) alloying Pd with Au and Cu eliminates hysteresis and introduces intrinsic deactivation resistance at ambient conditions, (ii) surfactant/stabilizer molecules can significantly accelerate and decelerate H2 sorption and thus sensor response, and (iii) polymer coatings accelerate sensor response, reduce the limit of detection (LoD), and enable molecular filtering for sensor operation in chemically challenging environments. Based on these insights, we discuss the rational development and detailed characterization of bulk-processed plasmonic plastics based on glassy and fluorinated matrix polymers and on tailored flow-chemistry-based synthesis of Pd and PdAu alloy colloidal nanoparticles with optimized stabilizer molecules. In their champion implementation, they enable highly stable H2 sensors with response times in the 2 s range and an LoD of few 10 ppm of H2. To put plasmonic plastics in a wider perspective, we also report their implementation using different polymer matrix materials that can be used for 3D printing and (an)isotropic Au nanoparticles that enable the manufacturing of macroscopic plasmonic objects with, if required, dichroic optical properties and in amounts that can be readily upscaled. We advertise that melt processing of plasmonic plastic nanocomposites is a viable route toward the realization of plasmonic objects and sensors, produced by scalable colloidal synthesis and additive manufacturing techniques.

2.
Chemistry ; 30(46): e202401430, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38825835

RESUMO

Herein, we report monomeric and dimeric norbornadiene-quadricyclane molecular photoswitch systems intended for molecular solar thermal applications. A series of six new norbornadiene derivatives conjugated with benzothiadiazole as the acceptor unit and dithiafulvene as the donor unit were synthesized and fully characterized. The photoswitches were evaluated by experimentally and theoretically measuring optical absorption profiles and thermal conversion of quadricyclane to norbornadiene. Computational insight by density functional theory calculations at the M06-2X/def2-SVPD level of theory provided geometries, storage energies, UV-vis absorption spectra, and HOMO-LUMO levels that are used to describe the function of the molecular systems. The studied molecules exhibit absorption onset ranging from 416 nm to 595 nm due to a systemic change in their donor-acceptor character. This approach was advantageous due to the introduction of benzothiadiazole and the dimeric nature of molecular structures. The best-performing system has a half-life of 3 days with quantum yields over 50 %.

3.
Chemistry ; 30(1): e202303230, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37947164

RESUMO

Solar energy utilization has gained considerable attention due to its abundance and renewability. However, its intermittent nature presents a challenge in harnessing its full potential. The development of energy storing compounds capable of capturing and releasing solar energy on demand has emerged as a potential solution. These compounds undergo a photochemical transformation that results in a high-energy metastable photoisomer, which stores solar energy in the form of chemical bonds and can release it as heat when required. Such systems are referred to as MOlecular Solar Thermal (MOST)-systems. Although the photoisomerization of MOST systems has been vastly studied, its back-conversion, particularly using heterogeneous catalysts, is still underexplored and the development of effective catalysts for releasing stored energy is crucial. Herein we compare the performance of 27 heterogeneous catalysts releasing the stored energy in an efficient Norbornadiene/Quadricyclane (NBD/QC) MOST system. We report the first benchmarking of heterogeneous catalysts for a MOST system using a robust comparison method of the catalysts' activity and monitoring the conversion using UV-Visible (UV-Vis) spectroscopy. Our findings provide insights into the development of effective catalysts for MOST systems. We anticipate that our assay will reveal the necessity of further investigation on heterogeneous catalysis.

4.
Chemistry ; 30(34): e202400322, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629212

RESUMO

This study presents the synthesis and characterization of two fluorescent norbornadiene (NBD) photoswitches, each incorporating two conjugated pyrene units. Expanding on the limited repertoire of reported photoswitchable fluorescent NBDs, we explore their properties with a focus on applications in bioimaging of amyloid beta (Aß) plaques. While the fluorescence emission of the NBD decreases upon photoisomerization, aligning with what has been previously reported, for the first time we observed luminescence after irradiation of the quadricyclane (QC) isomer. We deduce how the observed emission is induced by photoisomerization to the excited state of the parent isomer (NBD) which is then the emitting species. Thorough characterizations including NMR, UV-Vis, fluorescence, X-ray structural analysis and density functional theory (DFT) calculations provide a comprehensive understanding of these systems. Notably, one NBD-QC system exhibits exceptional durability. Additionally, these molecules serve as effective fluorescent stains targeting Aß plaques in situ, with observed NBD/QC switching within the plaques. Molecular docking simulations explore NBD interactions with amyloid, unveiling novel binding modes. These insights mark a crucial advancement in the comprehension and design of future photochromic NBDs for bioimaging applications and beyond, emphasizing their potential in studying and addressing protein aggregates.


Assuntos
Peptídeos beta-Amiloides , Corantes Fluorescentes , Pirenos , Corantes Fluorescentes/química , Pirenos/química , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Humanos , Simulação de Acoplamento Molecular , Norbornanos/química , Placa Amiloide/química , Placa Amiloide/diagnóstico por imagem , Teoria da Densidade Funcional , Isomerismo , Espectrometria de Fluorescência
5.
J Am Chem Soc ; 145(40): 22168-22175, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37766514

RESUMO

Visible-to-ultraviolet (UV) triplet-triplet annihilation photochemical upconversion (TTA-UC) has gained a lot of attention recently due to its potential for driving demanding high-energy photoreactions using low-intensity visible light. The efficiency of this process has rapidly improved in the past few years, in part thanks to the recently discovered annihilator compound 1,4-bis((triisopropylsilyl)ethynyl)naphthalene (N-2TIPS). Despite its beneficial TTA-UC characteristics, the success of N-2TIPS in this context is not yet fully understood. In this work, we seek to elucidate what role the specific type and number of substituents in naphthalene annihilator compounds play to achieve the characteristics sought after for TTA-UC. We show that the type of substituent attached to the naphthalene core is crucial for its performance as an annihilator. More specifically, we argue that the choice of substituent dictates to what degree the sensitized triplets form excimer complexes with ground state annihilators of the same type, which is a process competing with that of TTA. The addition of more bulky substituents positively impacts the upconverting ability by impeding excimer formation on the triplet surface, an effect that is enhanced with the number of substituents. The presence of triplet excimers is confirmed from transient absorption measurements, and the excimer formation rate is quantified, showing several orders of magnitude differences between different derivatives. These insights will aid in the further development of annihilator compounds for solar energy applications for which the behavior at low incident powers is of particular significance.

6.
Chemistry ; 29(70): e202303168, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37796081

RESUMO

Storing solar energy is a key challenge in modern science. MOlecular Solar Thermal (MOST) systems, in particular those based on azobenzene switches, have received great interest in the last decades. The energy storage properties of azobenzene (t1/2 <4 days; ΔH~270 kJ/kg) must be improved for future applications. Herein, we introduce peptoids as programmable supramolecular scaffolds to improve the energy storage properties of azobenzene-based MOST systems. We demonstrate with 3-unit peptoids bearing a single azobenzene chromophore that dynamics of the MOST systems can be tuned depending on the anchoring position of the photochromic unit on the macromolecular backbone. We measured a remarkable increase of the half-life of the metastable form up to 14 days at 20 °C for a specific anchoring site, significantly higher than the isolated azobenzene moiety, thus opening new perspectives for MOST development. We also highlight that liquid chromatography coupled to mass spectrometry does not only enable to monitor the different stereoisomers during the photoisomerization process as traditionally done, but also allows to determine the thermal back-isomerization kinetics.

7.
Langmuir ; 39(32): 11268-11273, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37505905

RESUMO

Hollow Ag-Pd nanoparticles have potentially high catalytic performance owing to their larger surface area compared to their corresponding solid nanoparticles. We successfully fabricated hollow Ag-Pd alloy nanodendrites and nanoboxes by using different Pd precursors (H2PdCl4 and Pd(acac)2) to achieve large surface area nanoboxes. Interestingly, the use of a H2PdCl4 precursor led to the formation of hollow nanodendrite structures, whereas the slower reduction of Pd(acac)2 led to the formation of hollow nanoboxes. The microstructure and chemical composition of Ag-Pd nanoparticles and properties of their growth solutions were investigated by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible spectroscopy.

8.
Faraday Discuss ; 245(0): 284-297, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37305958

RESUMO

The norbornadiene (NBD) molecule, C7H8, owes its fame to its remarkable photoswitching properties that are promising for molecular solar-thermal energy storage systems. Besides this photochemical interest, NBD is a rather unreactive species within astrophysical conditions and it should exhibit high photostability, properties that might also position this molecule as an important constituent of the interstellar medium (ISM)-especially in environments that are well shielded from short-wavelength radiation, such as dense molecular clouds. It is thus conceivable that, once formed, NBD can survive in dense molecular clouds and act as a carbon sink. Following the recent interstellar detections of large hydrocarbons, including several cyano-containing ones, in the dense molecular cloud TMC-1, it is thus logical to consider searching for NBD-which presents a shallow but non-zero permanent electric dipole moment (0.06 D)-as well as for its mono- and dicyano-substituted compounds, referred to as CN-NBD and DCN-NBD, respectively. The pure rotational spectra of NBD, CN-NBD, and DCN-NBD have been measured at 300 K in the 75-110 GHz range using a chirped-pulse Fourier-transform millimetre-wave spectrometer. Of the three species, only NBD was previously studied at high resolution in the microwave domain. From the present measurements, the derived spectroscopic constants enable prediction of the spectra of all three species at various rotational temperatures (up to 300 K) in the spectral range mapped at high resolution by current radio observatories. Unsuccessful searches for these molecules were conducted toward TMC-1 using the QUIJOTE survey, carried out at the Yebes telescope, allowing derivation of the upper limits to the column densities of 1.6 × 1014 cm-2, 4.9 × 1010 cm-2, and 2.9 × 1010 cm-2 for NBD, CN-NBD, and DCN-NBD, respectively. Using CN-NBD and cyano-indene as proxies for the corresponding bare hydrocarbons, this indicates that-if present in TMC-1-NBD would be at least four times less abundant than indene.

9.
Chem Soc Rev ; 51(17): 7313-7326, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35726574

RESUMO

Molecular solar thermal energy storage systems (MOST) offer emission-free energy storage where solar power is stored via valence isomerization in molecular photoswitches. These photoswitchable molecules can later release the stored energy as heat on-demand. Such systems are emerging in recent years as a vibrant research field that is rapidly transitioning from basic research to applications. Since a major part of the attention is focused on molecular design and engineering, MOST-based device development has not been systematically summarized and introduced to a broad audience. This tutorial review will discuss the most commonly used and developed devices from a chemical engineering point of view. It is expected that future developers of MOST technology could be inspired by the existing devices, keeping in mind the summarized essential practical challenges towards large-scale implementations and more innovative applications.

10.
Angew Chem Int Ed Engl ; 62(40): e202309543, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37489860

RESUMO

Photoswitches are molecular systems that are chemically transformed subsequent to interaction with light and they find potential application in many new technologies. The design and discovery of photoswitch candidates require intricate molecular engineering of a range of properties to optimize a candidate to a specific applications, a task which can be tackled efficiently using quantum chemical screening procedures. In this paper, we perform a large scale screening of approximately half a million bicyclic diene photoswitches in the context of molecular solar thermal energy storage using ab initio quantum chemical methods. We further device an efficient strategy for scoring the systems based on their predicted solar energy conversion efficiency and elucidate potential pitfalls of this approach. Our search through the chemical space of bicyclic dienes reveals systems with unprecedented solar energy conversion efficiencies and storage densities that show promising design guidelines for next generation molecular solar thermal energy storage systems.

11.
J Am Chem Soc ; 144(8): 3706-3716, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175751

RESUMO

Triplet-triplet annihilation photon upconversion (TTA-UC) is a process in which triplet excitons combine to form emissive singlets and holds great promise in biological applications and for improving the spectral match in solar energy conversion. While high TTA-UC quantum yields have been reported for, for example, red-to-green TTA-UC systems, there are only a few examples of visible-to-ultraviolet (UV) transformations in which the quantum yield reaches 10%. In this study, we investigate the performance of six annihilators when paired with the sensitizer 2,3,5,6-tetra(9H-carbazol-9-yl)benzonitrile (4CzBN), a purely organic compound that exhibits thermally activated delayed fluorescence. We report a record-setting internal TTA-UC quantum yield (ΦUC,g) of 16.8% (out of a 50% maximum) for 1,4-bis((triisopropylsilyl)ethynyl)naphthalene, demonstrating the first example of a visible-to-UV TTA-UC system approaching the classical spin-statistical limit of 20%. Three other annihilators, of which 2,5-diphenylfuran has never been used for TTA-UC previously, also showed impressive performances with ΦUC,g above 12%. In addition, a new method to determine the rate constant of TTA is proposed, in which only time-resolved emission measurements are needed, circumventing the need for more challenging transient absorption measurements. The results reported herein represent an important step toward highly efficient visible-to-UV TTA-UC systems that hold great potential for driving high-energy photochemical reactions.


Assuntos
Fótons , Energia Solar
12.
Phys Chem Chem Phys ; 24(47): 28956-28964, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36416497

RESUMO

We present a procedure for performing high throughput screening of molecular compounds for molecular solar thermal energy storage devices using extended tight binding (xTB) methods. In order to validate our approach, we performed screening of 3230 norbornadiene/quadricyclane (NBD/QC) derivatives in terms of storage energies, activation barriers and absorption of solar radiation using our approach, and compared it to high level density functional theory (DFT) and cluster perturbation (CP) theory calculations. Our comparisons show that the xTB screening framework correlates very well with DFT and CP theory in that it predicts the same relative trends in the studied parameters although the storage energies and thermal reaction barriers are significantly offset. Utilizing the screening methodology, we have been able to locate compounds that would either be excellent candidates or compounds that should not be considered further for molecular solar thermal energy storage devices. This methodology can readily be extended and applied to screening other molecular motifs for molecular solar energy storage.

13.
J Phys Chem A ; 126(39): 6849-6857, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36149432

RESUMO

The photoconversion of a norbornadiene (NBD) derivative was studied under high-intensity mono- and polychromatic light conditions at high concentrations. The photoisomerization quantum yield (ϕNBD→QC), proceeding from NBD to its quadricyclane (QC) isomer, was determined using a tunable OPO laser and a solar simulator light source. The solar simulator was designed to mimic the AM1.5G solar spectrum between 300 and 900 nm. Using the OPO laser, ϕNBD→QC was measured at discrete values between 310 and 350 nm in steps of 10 nm, and a variation between 0.81 and 0.96 was observed. Weighting these values of ϕNBD→QC with the spectral profile of the solar simulator, an averaged value of 0.87 ± 0.03 was obtained. Determination of ϕNBD→QC was also performed directly in the solar simulator providing a value of 0.97 ± 0.14, in good agreement with the weighted values from the OPO. Photoisomerization quantum yields were found to decrease slightly at higher concentrations. At high concentrations, we found that correcting for the presence of QC was important due to similar absorption coefficients of the NBD and QC isomers at the absorption tail. Cyclability of the forward and backward NBD/QC conversion was studied over several cycles. The NBD/QC couple exhibited excellent thermal stability, but a slight photodegradation per cycle was observed, increasing with the concentration of the sample. This result indicates that the molecules undergo some intermolecular reactions.

14.
Angew Chem Int Ed Engl ; 61(44): e202212483, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36102669

RESUMO

Leuco dye-based thermochromic materials offer enormous potential for visible molecular logic due to the appealing reversible color-changing effect. The stable color state is uncontrollable as it depends only on the spontaneous protonation of the leuco dye and color developer. There is still a challenge to propose an effective approach to control bistable color function at required temperature. A family of azobenzenes with various alkyl chains (AZO(n)) is designed for protonation competition with leuco dye. The hydrogen bond and Van der Waals forces are formed between color developer and AZO(n). The color developer can be locked to provide the proton for the leuco dye by Z-AZO(n), while it can be released upon Z-to-E photoisomerization. The locked state can be lasted for more than 16 hours. This optically controlled leuco dye-based system demonstrates a visible sequential logic operation with four-input signals, and provides a new type of protonation-based optical control.

15.
Acc Chem Res ; 53(8): 1478-1487, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32662627

RESUMO

ConspectusRenewable energy resources are mostly intermittent and not evenly distributed geographically; for this reason, the development of new technologies for energy storage is in high demand.Molecules that undergo photoinduced isomerization reactions that are capable of absorbing light, storing it as chemical energy, and releasing it as thermal energy on demand are referred to as molecular solar thermal energy storage (MOST) or solar thermal fuels (STF). Such molecules offer a promising solution for solar energy storage applications. Different molecular systems have been investigated for MOST applications, such as norbornadienes, azobenzenes, stilbenes, ruthenium derivatives, anthracenes, and dihydroazulenes. The polycyclic strained molecule norbornadiene (NBD), which photoconverts to quadricyclane (QC), is of great interest because it has a high energy storage density and the potential to store energy for a very long time. Unsubstituted norbornadiene has some limitations in this regard, such as poor solar spectrum match and low quantum yield. In the past decade, our group has developed and tested new NBD systems with improved characteristics. Moreover, we have demonstrated their function in laboratory-scale test devices for solar energy harnessing, storage, and release.This Account describes the most impactful recent findings on how to engineer key properties of the NBD/QC system (photochemistry, energy storage, heat release, stability, and synthesis) as well as examples of test devices for solar energy capture and heat release. While it was known that introducing donor-acceptor groups allows for a red-shifted absorption that better matches the solar spectrum, we managed to introduce donor and acceptor groups with very low molecular weight, which allowed for an unprecedented solar spectrum match combined with high energy density. Strategic steric hindrance in some of these systems dramatically increases the storage time of the photoisomer QC, and dimeric systems have independent energies barriers that lead to an improved solar spectrum match, prolonged storage times, and higher energy densities. These discoveries offer a toolbox of possible chemical modifications that can be used to tune the properties of NBD/QC systems and make them suitable for the desired applications, which can be useful for anyone wanting to take on the challenge of designing efficient MOST systems.Several test devices have been built, for example, a hybrid MOST device that stores sunlight energy and heat water at the same time. Moreover, we developed a device for monitoring catalyzed QC to NBD conversion resulting in the possibility to quantify a significant macroscopic heat generation. Finally, we tested different formulations of polymeric composites that can absorb light during the day and release the energy as heat during the night for possible use in future window coating applications. These lab-scale realizations are formative and contribute to pushing the field forward toward the real-life application of MOST systems.

16.
J Phys Chem A ; 125(48): 10330-10339, 2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34809434

RESUMO

Molecular photoswitches can under certain conditions be used to store solar energy in the so-called molecular solar thermal storage systems, which is an interesting technology for renewable energy solutions. The current investigations focus on the performance of seven different density functional theory (DFT) methods (B3LYP, CAM-B3LYP, PBE0, M06-2X, ωB97X-D, B2PLYP, and PBE0DH) when predicting geometries and thermochemical properties of the [2.2.2]-bicyclooctadiene (BOD) photoswitch. We find that all of the investigated DFT methods provide geometries that are in good agreement with those obtained using coupled cluster singles and doubles (CCSD) calculations. The dependence on the employed basis set is not large when predicting geometries. With respect to the thermochemical properties, we find that the M06-2X, CAM-B3LYP, PBE0, and ωB97X-D functionals all predict thermochemical properties that are in good agreement with the results of the CCSD, the CCSD including perturbative triples (CCSD(T)), and the explicitly correlated CCSD-F12 and CCSD(T)-F12 models. Lastly, for energy calculations, we tested the newly developed fourth-order cluster perturbation theory singles and doubles CPS(D-4) model, which in this study provides energy differences that are of CCSD and sometimes also CCSD(T) quality at a relatively low cost. We find that the CPS(D-4) model is an excellent choice for further investigation of BOD derivatives because accurate energies can be obtained routinely using this methodology. From the results, we also note that the predicted storage energies and storage energy densities for the BOD photoswitch are very large compared to other molecular solar thermal storage systems and that these systems could be candidates for such applications.

17.
Chem Soc Rev ; 49(18): 6529-6554, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32955529

RESUMO

Triplet-triplet annihilation based molecular photon upconversion (TTA-UC) is an exciting research area for a broad range of photonic applications due to its tunable spectral range and possible operation at non-coherent solar irradiance. Most of the TTA-UC studies are limited to Visible to Visible (Vis to Vis) energy upconversion. However, for several practical photonic applications, efficient near infrared (NIR) to Vis upconversion is preferred. Examples include, (i) photovoltaics where TTA-UC could lead to utilization of a larger part of the solar spectrum and (ii) in NIR stimulated biological applications where the deep penetration and non-invasive nature of NIR light coupled to TTA-UC offers new opportunities. Although, NIR to Vis TTA-UC is known since 2007, the recent five years have witnessed quite a progress in terms of the development of new chromophores, hybrid systems and fabrication techniques to increase the UC quantum yield at low excitation intensity. With this tutorial review we are reviewing recent progress, identifying existing challenges and discus possible future directions and opportunities.

18.
Angew Chem Int Ed Engl ; 60(37): 20184-20189, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270157

RESUMO

The ability to detect proteins through gating conductance by their unique surface electrostatic signature holds great potential for improving biosensing sensitivity and precision. Two challenges are: (1) defining the electrostatic surface of the incoming ligand protein presented to the conductive surface; (2) bridging the Debye gap to generate a measurable response. Herein, we report the construction of nanoscale protein-based sensing devices designed to present proteins in defined orientations; this allowed us to control the local electrostatic surface presented within the Debye length, and thus modulate the conductance gating effect upon binding incoming protein targets. Using a ß-lactamase binding protein (BLIP2) as the capture protein attached to carbon nanotube field effect transistors in different defined orientations. Device conductance had influence on binding TEM-1, an important ß-lactamase involved in antimicrobial resistance (AMR). Conductance increased or decreased depending on TEM-1 presenting either negative or positive local charge patches, demonstrating that local electrostatic properties, as opposed to protein net charge, act as the key driving force for electrostatic gating. This, in turn can, improve our ability to tune the gating of electrical biosensors toward optimized detection, including for AMR as outlined herein.


Assuntos
Técnicas Biossensoriais , Nanotubos de Carbono/química , Proteínas/química , Semicondutores , Eletricidade Estática
19.
J Am Chem Soc ; 142(41): 17581-17588, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32969652

RESUMO

Efficient energy transfer is particularly important for multiexcitonic processes like singlet fission and photon upconversion. Observation of the transition from short-range tunneling to long-range hopping during triplet exciton transfer from CdSe nanocrystals to anthracene is reported here. This is firmly supported by steady-state photon upconversion measurements, a direct proxy for the efficiency of triplet energy transfer (TET), as well as transient absorption measurements. When phenylene bridges are initially inserted between a CdSe nanocrystal donor and anthracene acceptor, the rate of TET decreases exponentially, commensurate with a decrease in the photon upconversion quantum efficiency from 11.6% to 4.51% to 0.284%, as expected from a tunneling mechanism. However, as the rigid bridge is increased in length to 4 and 5 phenylene units, photon upconversion quantum efficiencies increase again to 0.468% and 0.413%, 1.5-1.6 fold higher than that with 3 phenylene units (using the convention where the maximum upconversion quantum efficiency is 100%). This suggests a transition from exciton tunneling to hopping, resulting in relatively efficient and distance-independent TET beyond the traditional 1 nm Dexter distance. Transient absorption spectroscopy is used to confirm triplet energy transfer from CdSe to transmitter, and the formation of a bridge triplet state as an intermediate for the hopping mechanism. This first observation of the tunneling-to-hopping transition for long-range triplet energy transfer between nanocrystal light absorbers and molecular acceptors suggests that these hybrid materials should further be explored in the context of artificial photosynthesis.

20.
J Am Chem Soc ; 142(28): 12256-12264, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551567

RESUMO

Discovering physicochemical principles for simultaneous harvesting of multiform energy from the environment will advance current sustainable energy technologies. Here we explore photochemical phase transitions-a photochemistry-thermophysics coupled regime-for coharvesting of solar and thermal energy. In particular, we show that photon energy and ambient heat can be stored together and released on demand as high-temperature heat, enabled by room-temperature photochemical crystal↔liquid transitions of engineered molecular photoswitches. Integrating the two forms of energy in single-component molecular materials is capable of providing energy capacity beyond that of traditional solar or thermal energy storage systems based solely on molecular photoisomerization or phase change, respectively. Significantly, the ambient heat that is harvested during photochemical melting into liquid of the low-melting-point, metastable isomer can be released as high-temperature heat by recrystallization of the high-melting-point, parent isomer. This reveals that photon energy drives the upgrading of thermal energy in such a hybrid energy system. Rationally designed small-molecule azo switches achieve high gravimetric energy densities of 0.3-0.4 MJ/kg with long-term storage stability. Rechargeable solar thermal battery devices are fabricated, which upon light triggering provide gravimetric power density of about 2.7 kW/kg and temperature increases of >20 °C in ambient environment. We further show their use as deicing coatings. Our work demonstrates a new concept of energy utilization-combining solar energy and low-grade heat into higher-grade heat-which unlocks the possibility of developing sustainable energy systems powered by a combination of natural sunlight and ambient heat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA