Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Phys ; 160(11)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511660

RESUMO

The small-angle neutron scattering (SANS) and small-angle x-ray scattering (SAXS) measurements were performed for deuterated and non-deuterated poly(ethylene glycol) (d-PEG and h-PEG, respectively) in D2O and a D2O/H2O mixed solvent (Mix) to compare the scattering profiles. To determine the coherent scattering intensity of SANS, a 3He spin filter was utilized. The scattering profiles determined by the SANS measurements were analyzed in terms of the wormlike chain model with touched beads along the contour of the chain. However, the SAXS profiles were not explained by the same model with uniform beads but with beads each consisting of a core and a shell having different electron densities. To explore the chain thickness determined from the SANS profile, the scattering intensities for different combinations of d-PEG/D2O, d-PEG/Mix, h-PEG/D2O, and h-PEG/Mix were also examined.

2.
Langmuir ; 39(31): 10965-10977, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37503925

RESUMO

Understanding clay flotation mechanisms has become a major concern because of the increasing level of environmental contamination of soil and ground water by heavy metals and radionuclides. Clays are often used as sorbents for extracting metals in indirect flotation processes but can function simultaneously as defoamers. However, how foam generation and stability depend on the molecular interactions between the clays and surfactant is still controversial. In the present study, an amine polyethoxylated surfactant was used as a bifunctional surfactant that collected clay particles and acted as a foaming agent in the flotation process. The pH conditions strongly affected the surfactant physicochemical properties, allowing the clay extraction efficiency to be tuned. The interfacial recovery factor of the clays almost reached 100% under acidic (pH < 6) and neutral (pH 6-10) conditions, whereas it was negative under alkaline conditions (pH > 10), contrary to expectations. To elucidate the mechanisms involved in the particle flotation process for each of the pH conditions, the bulk and foam phases were analyzed. The effects of electrostatic interactions between the solutes and multiscale structure on the clay extraction behavior were investigated by electrophoretic measurements, dynamic light scattering, small-angle neutron scattering, and image analysis. Based on these results, three flotation processes were found depending on pH range: surfactant foam fractionation at pH > 10; clay particle foam flotation at pH 6-10; and particle froth flotation at pH < 6.

3.
Environ Sci Technol ; 57(26): 9802-9810, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37347651

RESUMO

Aggregation of humic acids (HAs) was studied by small-angle neutron and X-ray scattering techniques. The combination of these techniques enables us to examine the aggregation structures of HA particles. Two HAs with distinctive compositions were examined: a commercial HA (PAHA) and a HA extracted from deep sedimentary groundwater (HHA). While macroscopic coagulation tests showed that these HAs were stable in solutions except for HHA at pH < 6, small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS) revealed that they formed aggregates with sizes exceeding the sub-micrometer length scale. The SAXS curves of PAHA remarkably varied with pD = log aD+, where aD+ stands for the activity of deuterium ions, whereas the SANS curves did not. With the help of theoretical fittings, it was revealed that PAHA aggregates consisted of two domains: poorly hydrated cores and well-hydrated proton-rich shells. The cores were (dis)aggregated with pD inside the aggregates of the shells. The SANS and SAXS curves of HHA resembled each other, and their intensities at low q, where q stands for the scattering vector, increased with a decrease of pD, indicating the formation of homogeneous aggregates within the spatial resolutions of SANS and SAXS. This study revealed that distinctive aggregation behaviors exist in humic substances with nm-scale heterogeneous structures like PAHA, which is important for their roles in the fate of contaminants or nutrients in aqueous environments.


Assuntos
Substâncias Húmicas , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Raios X , Difração de Nêutrons/métodos , Difração de Raios X
4.
Langmuir ; 38(48): 14656-14665, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399660

RESUMO

This study investigates the formation of amorphous tetravalent metal hydroxides, M(OH)4, based on the structural analysis by small- and wide-angle X-ray scattering (SWAXS) and on the electrical potential charge near the surface of M(OH)4 particles. The amorphous zirconium hydroxide solid phases that aged in NaCl and CaCl2 solutions at 25 °C exhibited a hierarchical structure consisting of primary particles of a few nanometers in size and their aggregates more than 100 nm in size. The SWAXS profiles suggested that the size of the primary particles depends on the ionic strength and electrolytes in the sample solutions. The smaller size of the primary particles observed in solutions with higher ionic strength can be explained by the thinner electrical double layer. Additionally, we focused on the ζ potentials of M(OH)4 suspensions in NaCl, NaNO3, and CaCl2 solutions. With the aid of reference systems of metal oxides, MO2, it was found that the ζ potentials were well interpreted by a traditional surface ionization and complexation model, and the size distributions of large aggregates were explained by the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory with the ζ potential values. The present study suggests the formation mechanism of amorphous metal hydroxides through a combination of structural analysis and investigation of electrical potentials.

5.
Langmuir ; 35(24): 7995-8006, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117736

RESUMO

We report the hierarchical structure of zirconium hydroxide after aging at different temperatures to elucidate the factors governing zirconium solubility in aqueous solutions. Zirconium hydroxide solid phases after aging at 25, 40, 60, and 90 °C under acidic to alkaline conditions were investigated using extended X-ray absorption fine structure (EXAFS), wide- and small-angle X-ray scattering (WAXS and SAXS), and transmission electron microscopy (TEM) techniques to reveal the bulk and surface structures of the solid phases from the nanoscale to sub-microscale. After aging at 25 °C, the fundamental building unit of the solid phase was considered to be tetrameric and dimeric hydroxide species. These polynuclear species formed amorphous primary particles that are approximately 3 nm in size, which in turn formed aggregates that are hundreds of nanometers in size. This hierarchical structure was found to be stable up to 60 °C under acidic and neutral conditions and up to 40 °C under alkaline conditions. After aging at 90 °C under acidic conditions and at 60 and 90 °C under alkaline conditions, the WAXS and EXAFS measurements suggested the crystallization of the solid phase. The SAXS profiles and TEM observations supported the existence of crystallized large particles about 60 nm in size, and the appearance of the Guinier region in the SAXS profiles indicated that the crystallization of the amorphous primary particles leads to the reduction of the size of the large aggregates. The transformation of the solid-phase structure by temperature was discussed in relation to the solubility product to understand the solubility-limiting solid phase. The solubility of zirconium hydroxide after aging at different temperatures was governed not only by the size of the amorphous primary particles or crystallized large particles but also by their surface configuration.

6.
Inorg Chem ; 58(13): 8720-8734, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31247879

RESUMO

Current methods for the extraction of rhodium carry the highest carbon footprint and worst pollution metrics of all of the elements used in modern technological applications. Improving upon existing methods is made difficult by the limited understanding of the molecular-level chemistry occurring in extraction processes, particularly in the hydrometallurgical separation step. While many of the precious metals can be separated by solvent extraction, there currently exist no commercial extractants for Rh. This is due to its complicated mixed speciation upon leaching into hydrochloric acid, which gives rise to difficulties in designing effective reagents for solvent extraction. Herein we show that the diamidoamine reagent N- n-hexylbis( N-methyl- N- n-octylethylamide)amine transports Rh(III) from aqueous HCl into an organic phase as the monoaquated dianion [RhCl5(H2O)]2- through the formation of an outer-sphere assembly; this assembly has been characterized by experimentation (slope analysis, FT-IR and NMR spectroscopy, EXAFS, SANS, and ESI-MS) and computational modeling. The paper demonstrates the importance of applying a broad range of techniques to obtain a convincing mode of action for the complex processes involved in anion recognition in the solution phase. A consistent and comprehensive understanding of how the ligand operates to achieve Rh(III) selectivity over the competitor anion Cl- has emerged. This knowledge will guide the design of extractants and thus offers promise for improving the sustainability of metal extraction from both traditional mining sources and the recycling of secondary source materials.

7.
Chemistry ; 20(46): 14955-8, 2014 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-25296698

RESUMO

Here it is demonstrated that mesoporous silicas (MPSs) can be used as effective "topological crosslinkers" for poly(N-isopropylacrylamide) (PNIPA) hydrogels to improve the mechanical property. Three-dimensional bicontinuous mesporous silica is found to effectively reinforce the PNIPA hydrogels, as compared to nonporous silica and two-dimensional hexagonally ordered mesoporous silica.

8.
Langmuir ; 30(50): 15127-34, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25426676

RESUMO

The effect of cesium (Cs) adsorption on the mesoscopic structure of the clay minerals vermiculite and weathered biotite (WB) in suspensions was elucidated by small-angle X-ray scattering (SAXS). The clay minerals form multilayered structures, and the Cs cations (Cs(+)) are strongly adsorbed in the interlayer space of the soil clays, in particular vermiculite and WB. SAXS was used to monitor the relationship between Cs(+) adsorption at the clay interlayers and the structural changes at length scales from 1 to 1000 Å. The variation in the distance between the neighboring clay sheets and the spatial arrangement of the clay sheets with and without Cs(+) were clarified. Our quantitative analyses revealed that the number of stacked layers of pure vermiculite was decreased by Cs(+) addition, whereas that of WB increased. Moreover, the average distance between the neighboring layers of vermiculite in suspension was larger than that of WB, which reflects the different conditions of Cs(+) intercalation. These findings provide fundamental insights that are important for predicting the environmental fate of radioactive Cs in contaminated regions and for developing methods for extracting Cs from soil.

9.
Nanoscale ; 16(19): 9400-9405, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38651636

RESUMO

Tough carboxymethylcellulose nanofibers (CMF)/zirconium (Zr) hydrogels were easily obtained by a freeze-crosslinking method, where Zr-containing HCl solution was added to frozen CMF sol and the mixture was allowed to thaw. The Zr content of the hydrogels increased with increasing Zr concentration in the initial HCl solution. Furthermore, the mechanical strength increased with increasing Zr content. The Young's modulus value was improved by approximately 6 times compared to the CMF hydrogel without Zr, i.e., from 4.5 kPa to 27.2 kPa. The hydrogel had a porous structure with a pore size of 133 ± 37 µm and a CMF-Zr sheet structure around the pores. The obtained CMF-Zr hydrogel exhibited high adsorptivity for fluoride. The maximum adsorption capacity (Qmax) was estimated to be 24.1 mg g-1. This simple gelation method provides useful insights for the development of easy-to-handle hydrogel-based adsorbents.

10.
Commun Chem ; 7(1): 128, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867063

RESUMO

Dissipative structures often appear as an unstable counterpart of ordered structures owing to fluctuations that do not form a homogeneous phase. Even a multiphase mixture may simultaneously undergo one chemical reaction near equilibrium and another one that is far from equilibrium. Here, we observed in real time crystal seed formation and simultaneous nanocrystal aggregation proceeding from CeIV complexes to CeO2 nanoparticles in an acidic aqueous solution, and investigated the resultant hierarchical nanoarchitecture. The formed particles exhibited two very different size ranges, resulting in further pattern formation with opalescence. The hierarchically assembled structures in solutions were CeO2 colloids, viz. primary core clusters (1-3 nm) of crystalline ceria and secondary clusters (20-30 nm) assembled through surface ions. Such self-assembly is widespread in multi-component complex fluids, paradoxically moderating hierarchical reactions. Stability and instability are not only critical but also complementary for co-optimisation around the nearby free energy landscape prior to bifurcation.

11.
J Phys Chem Lett ; 14(49): 11235-11241, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38060373

RESUMO

This work investigates the water fraction dependence of the aggregation behavior of hydrophobic solutes in water-tetrahydrofuran (THF) and the elucidation of the role of THF using fluorescence microscopy, dynamic light scattering, neutron and X-ray scattering, and photoluminescence measurements. On the basis of the obtained results, the following model is proposed: hydrophobic molecules are molecularly dispersed in the low-water-content region (10-20 vol %), while they form mesoscopic particles upon increasing the water fraction to ∼30 vol %. This abrupt change is due to the composition fluctuation of the water-THF binary system to form hydrophobic areas in THF, followed by THF-rich droplets where hydrophobic solutes are incorporated and form loose aggregates. Further increasing the water content prompts the desolvation of THF, which decreases the particle size and generates tight aggregates of solute molecules. This model is consistent with the luminescence behavior of the solutes and will be helpful to control the aggregation state of hydrophobic solutes in various applications.

12.
J Phys Chem B ; 127(9): 2052-2065, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36821599

RESUMO

There is an ever-increasing body of evidence that metallic complexes involving amphiliphic ligands do not form normal solutions in organic solvents. Instead, they form complex fluids with intricate structures. For example, the metallic complexes may aggregate into clusters, and these clusters themselves may aggregate into superclusters. To gain a deeper insight into the mechanisms at play, we have used an improved force field to conduct extensive molecular dynamics simulations of a system composed of zirconium nitrate, water, nitric acid, tri-n-butyl phosphate, and n-octane. The important new finding is that a dynamic equilibrium between the cis and trans isomers of the metal complex is likely to play a key role in the aggregation behavior. The isolated cis and trans isomers have similar energies, but simulation indicates that the clusters consist predominantly of cis isomers. With increasing metal concentration, we hypothesize that more clustering occurs and the chemical equilibrium shifts toward the cis isomer. It is possible that such isomeric effects play a role in the liquid-liquid extraction of other species and the inclusion of such effects in flow sheet modeling may lead to a better description of the process.

13.
J Phys Chem Lett ; 14(34): 7638-7643, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37605312

RESUMO

Spin-contrast-variation (SCV) small-angle neutron scattering (SANS) is a technique to determine the nanostructure of composite materials from the scattering of polarized neutrons that changes with proton polarization of samples. The SCV-SANS enabled us to determine structure of nanoice crystals that were generated in rapidly frozen sugar solutions by separating the overlapped signals from the nanoice crystals and frozen amorphous solutions. In the frozen glucose solution, we found that the nanoice crystals formed a planar structure with a radius larger than several tens of nanometers and a thickness of 2.5 ± 0.5 nm, which was close to the critical nucleation size of ice crystals in supercooled water. This result suggests that the glucose molecules were preferentially bound to a specific face of nanoice crystals and then blocked the crystal growth perpendicular to that face.

14.
ACS Cent Sci ; 5(1): 85-96, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30693328

RESUMO

Short- and long-range correlations between solutes in solvents can influence the macroscopic chemistry and physical properties of solutions in ways that are not fully understood. The class of liquids known as complex (structured) fluids-containing multiscale aggregates resulting from weak self-assembly-are especially important in energy-relevant systems employed for a variety of chemical- and biological-based purification, separation, and catalytic processes. In these, solute (mass) transfer across liquid-liquid (water, oil) phase boundaries is the core function. Oftentimes the operational success of phase transfer chemistry is dependent upon the bulk fluid structures for which a common functional motif and an archetype aggregate is the micelle. In particular, there is an emerging consensus that mass transfer and bulk organic phase behaviors-notably the critical phenomenon of phase splitting-are impacted by the effects of micellar-like aggregates in water-in-oil microemulsions. In this study, we elucidate the microscopic structures and mesoscopic architectures of metal-, water-, and acid-loaded organic phases using a combination of X-ray and neutron experimentation as well as density functional theory and molecular dynamics simulations. The key conclusion is that the transfer of metal ions between an aqueous phase and an organic one involves the formation of small mononuclear clusters typical of metal-ligand coordination chemistry, at one extreme, in the organic phase, and their aggregation to multinuclear primary clusters that self-assemble to form even larger superclusters typical of supramolecular chemistry, at the other. Our metrical results add an orthogonal perspective to the energetics-based view of phase splitting in chemical separations known as the micellar model-founded upon the interpretation of small-angle neutron scattering data-with respect to a more general phase-space (gas-liquid) model of soft matter self-assembly and particle growth. The structure hierarchy observed in the aggregation of our quinary (zirconium nitrate-nitric acid-water-tri-n-butyl phosphate-n-octane) system is relevant to understanding solution phase transitions, in general, and the function of engineered fluids with metalloamphiphiles, in particular, for mass transfer applications, such as demixing in separation and synthesis in catalysis science.

15.
J Phys Chem B ; 122(4): 1439-1452, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216427

RESUMO

We present evidence that the transition between organic and third phases, which can be observed in the plutonium uranium reduction extraction (PUREX) process at high metal loading, is an unusual transition between two isotropic bicontinuous microemulsion phases. As this system contains so many components, however, we have been seeking first to investigate the properties of a simpler system, namely, the related metal-free, quaternary water/n-dodecane/nitric acid/tributyl phosphate (TBP) system. This quaternary system has been shown to exhibit, under appropriate conditions, three coexisting phases: a light organic phase, an aqueous phase, and the so-called third phase. In the current work, we focused on the coexistence of the light organic phase with the third phase. Using Gibbs ensemble Monte Carlo (GEMC) simulations, we found coexistence of a phase rich in nitric acid and dilute in n-dodecane (the third phase) with a phase more dilute in nitric acid but rich in n-dodecane (the light organic phase). The compositions and densities of these two coexisting phases determined using the simulations were in good agreement with those determined experimentally. Because such systems are generally dense and the molecules involved are not simple, the particle exchange rate in their GEMC simulations can be rather low. To test whether a system having a composition between those of the observed third and organic phases is indeed unstable with respect to phase separation, we used the Bennett acceptance ratio method to calculate the Gibbs energies of the homogeneous phase and the weighted average of the two coexisting phases, where the compositions of these phases were taken both from experimental results and from the results of the GEMC simulations. Both demixed states were determined to have statistically significant lower Gibbs energies than the uniform, mixed phase, providing confirmation that the GEMC simulations correctly predicted the phase separation. Snapshots from the simulations and a cluster analysis of the organic and third phases revealed structures akin to bicontinuous microemulsion phases, with the polar species residing within a mesh and with the surface of the mesh formed by amphiphilic TBP molecules. The nonpolar n-dodecane molecules were observed in these snapshots to be outside this mesh. The only large-scale structural differences observed between the two phases were the dimensions of the mesh. Evidence for the correctness of these structures was provided by the results of small-angle X-ray scattering (SAXS) studies, where the profiles obtained for both the organic and third phases agreed well with those calculated from simulations. Finally, we looked at the microscopic structures of the two phases. In the organic phase, the basic motif was observed to be one nitric acid molecule hydrogen-bonded to a TBP molecule. In the third phase, the most common structure was that of the hydrogen-bonded TBP-HNO3-HNO3 chain. A cluster analysis provided evidence for TBP forming an extended, connected network in both phases. Studies of the effects of metal ions on these systems will be presented elsewhere.

16.
Sci Rep ; 7(1): 2064, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522874

RESUMO

A calcium (Ca)-deficient hydroxyapatite was investigated for its potential to remove Sr2+ from environmentally relevant water. We conducted sorption tests on solutions containing magnesium ion (Mg2+) and calcium ion (Ca2+) as competing cations at a strontium ion (Sr2+) concentration of 0.05 mmol/L. The Ca-deficient hydroxyapatite maintained a high Sr2+ sorption ratio of above 80% in the presence of Mg2+ and Ca2+ at the concentrations between 0.1 and 1.0 mmol/L, whereas the stoichiometric hydroxyapatite showed a lower ratio even in the presence of small amounts of Mg2+ and Ca2+ (72% for Mg2+ and 51% for Ca2+ at 0.1 mmol/L). For solutions with various Sr2+ concentrations between 0.01 and 10 mmol/L, Ca-deficient hydroxyapatite exhibited a higher Sr2+ sorption ratio than stoichiometric hydroxyapatite. The bonding states of Sr2+ on the Ca-deficient hydroxyapatite were evaluated by extended X-ray absorption fine structure measurements. The results indicated that there are specific sorption sites in Ca-deficient hydroxyapatite where Sr2+ is stably and preferentially immobilized.

17.
Anal Sci ; 33(11): 1305-1309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29129872

RESUMO

Using N,N,N',N'-tetra-2-ethylhexyl-thiodiglycolamide (TEHTDGA) in n-dodecane as the extractant, we compared the percentages of Pd(II) extracted from HCl and HBr solutions, and analyzed the structures of the Pd(II)-extractant complexes. For comparison, similar experiments were performed with di-n-hexyl sulfide (DHS), a well-known sulfide-type extractant. TEHTDGA extracted Pd(II) from both HCl and HBr solutions much faster than DHS. The Pd(II)/(TEHTDGA or DHS) stoichiometry in the organic phase was 1:2. For TEHTDGA, the extractability of Pd(II) from HBr solution was inferior to that from HCl solution, whereas the opposite was true for DHS. However, FT-IR spectroscopy and EXAFS measurements indicated that the inner-sphere structure of Pd(II) in the TEHTDGA complex was almost the same as that in the DHS system: in both cases, two of the halide ions in the tetrachloro- or tetrabromopalladate(II) ion were replaced by the sulfur atoms of two extractant molecules.

18.
J Phys Chem B ; 120(23): 5183-93, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27192017

RESUMO

A refined model for tri-n-butyl phosphate (TBP), which uses a new set of partial charges generated from our ab initio density functional theory calculations, has been proposed in this study. Molecular dynamics simulations are conducted to determine the thermodynamic properties, transport properties, and the microscopic structures of liquid TBP, TBP/water mixtures, and TBP/n-alkane mixtures. These results are compared with those obtained from four other TBP models, previously described in the literature. We conclude that our refined TBP model appears to be the only TBP model from this set that, with reasonable accuracy, can simultaneously predict the properties of TBP in bulk TBP, in organic diluents, and in aqueous solution. The other models only work well for two of the three systems mentioned above. This new TBP model is thus appropriate for the simulation of liquid-liquid extraction systems in the nuclear extraction process, where one needs to simultaneously model TBP in both aqueous and organic phases. It is also promising for the investigation of the microscopic structure of the organic phase in these processes and for the characterization of third-phase formation, where TBP again interacts simultaneously with both polar and nonpolar molecules. Because the proposed TBP model uses OPLS-2005 Lennard-Jones parameters, it may be used with confidence to model mixtures of TBP with other species whose parameters are given by the OPLS-2005 force field.

19.
Colloids Surf B Biointerfaces ; 38(3-4): 213-9, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15542328

RESUMO

By employing small-angle neutron scattering (SANS), we investigated the microstructures of, poly(N-isopropylacrylamide) (PNIPA)-block-poly(ethylene glycol) (PEG) (NE) in deuterated water D2O, as related to macroscopic behaviors of fluidity, turbidity and synerisis. SANS revealed following results: (i) microphase separation occurs at around above 17 degrees C in a temperature range of transparent sol below 30 degrees C. In the microdomain appeared in the transparent sol state, both block chains of PNIPA and PEG are swollen by water; (ii) for the NE solution of polymer concentration W(p)>3.5% (w/v), corresponding to opaque gel above 30 degrees C, a percolated structure, i.e., network-like domain is formed by NE as a result of macrophase separation due to dehydration of the PNIPA chains. As the temperature increases toward 40 degrees C, the network domain is squeezed along a direction parallel to the NE interface, which leads to increase of the interfacial thickness given by swollen PEG chains and to the macroscopic synerisis behavior.


Assuntos
Resinas Acrílicas/química , Polietilenoglicóis/química , Água/química , Nêutrons , Espalhamento de Radiação
20.
Sci Rep ; 4: 6585, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25300233

RESUMO

Following the Fukushima Daiichi nuclear disaster in 2011, Cs radioisotopes have been dispersed over a wide area. Most of the Cs has remained on the surface of the soil because Cs(+) is strongly adsorbed in the interlayer spaces of soil clays, particularly vermiculite. We have investigated the microscopic structure of an aqueous suspension of vermiculite clay over a wide length scale (1-1000 Å) by small-angle X-ray scattering. We determined the effect of the adsorption behavior of Cs(+) on the structural changes in the clay. It was found that the abruption of the clay sheets was induced by the localization of Cs(+) at the interlayer. This work provides important information for predicting the environmental fate of radioactive Cs in polluted areas, and for developing methods to extract Cs from the soil and reduce radioactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA