Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 32(1): 205-216, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38175049

RESUMO

This paper specifically focuses on the absorber, the critical component responsible for the detector's response performance. The meta-surface absorber combines two resonant structures and achieves over 80% absorptance around 210 GHz, resulting in a broad operating frequency range. FR-4 is selected as the dielectric layer to be compatible with standard printed circuit board (PCB) technology, which reduces the overall fabrication time and cost. The absorbing unit and array layout are symmetrically designed, providing stable absorptance performance even under incident waves of different polarization angles. The polarization-insensitive absorptance characteristic further enhances the compatibility between the absorber and the detector in the application scenario. Furthermore, the thermal insulation performance of the absorber is ensured by introducing thermal insulation gaps. After completing fabrication through PCB technology, testing revealed that the absorber maintained excellent absorptance performance within its primary operating frequency range. This performance consistency closely matched the simulation results.

2.
Appl Opt ; 62(26): 6864-6870, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37707023

RESUMO

High-performance devices with superior execution will facilitate the practical application of terahertz (THz) technology and foster THz innovation. In this paper, taking advantage of the phase transition characteristics of vanadium dioxide (V O 2), a reconfigurable metasurface with absorption and polarization conversion capacities is proposed. The metallic condition of V O 2 results in the formation of a wideband absorber. It provides more than 90% absorption over a broad spectral range from 3.32 to 5.30 THz. Due to the regularity of the meta-atom, the absorber is not polarization-delicate and keeps a high retention rate in the scope of incoming angles from 0° to 45°. When V O 2 is in the insulating condition, the calculated outcomes demonstrate that the cross-polarization conversion rate can reach more than 90% in the range of 2.29-7.85 THz when x-polarized or y-polarized waves are incident vertically. The proposed metasurface is likely to be used in the fields of emitters, sensors, imaging systems, and wireless communication.

3.
Opt Express ; 30(10): 15939-15950, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221448

RESUMO

Terahertz (THz) refers to electromagnetic waves with frequency from 0.1 to 10 THz, which lies between millimeter waves and infrared light. This paper proposes an ultra-thin metasurface absorber which is perfectly suited to be the signal coupling part of terahertz focal plane array (FPA) detector. The absorptance of the proposed metasurface is higher than 80% from 4.46 to 5.76 THz (25.4%) while the thickness is merely 1.12 µm (0.018 λ). Since the metasurface absorber will be applied to terahertz FPA detector which requires planar array formation, it is divided into meta-atoms. Each meta-atom consists of the same unit cell layout, and air gaps are introduced between adjacent meta-atoms to enhance the thermal isolation, which is crucial for FPA detector to obtain desired imaging results. Due to the symmetrical layout of meta-atoms, absorptance keeps stable for different polarized waves, moreover, good absorptance could also be achieved for incidence angles range of ± 30 °. Spectral measurements show good agreement with the simulation. As a result, features of ultra-thin thickness, polarization insensitivity, and high absorptance make the proposed metasurface absorber well suited to highly efficient coupling of terahertz signals in FPA detector.

4.
Curr Microbiol ; 69(4): 517-24, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24894904

RESUMO

Strain 39 is an endophytic fungus which was isolated from Dioscorea nipponica Makino (DNM). After Strain 39 co-cultured with ethanol extract of DNM rhizomes for several days, the content of saponins in this culture mixture would be obviously increased. To analyze the mechanism of this microbial transformation, we used the differential display reverse transcription polymerase chain reaction (DDRT-PCR) method to compare the transcriptomes between Strain 39 cultured in normal PD medium and in PD medium which added ethanol extract of DNM rhizomes. We amplified 29 DDRT-PCR bands using 12 primer combinations of three anchored primers and five random primers, and six bands were re-amplified. Analysis of real-time PCR and sequence alignment showed that three clones were up-regulated in sample group: squalene epoxidase, squalene synthase, and catalase, one clone was expressed only in sample group. The possible roles and origins of the above genes were discussed, and the molecular mechanism of Strain 39 biotransformation was speculated. This study is the first report of the molecular biotransformation mechanism of saponins production by endophytic fungus of DNM.


Assuntos
Dioscorea/microbiologia , Endófitos/genética , Proteínas Fúngicas/genética , Fungos/genética , Dioscorea/química , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/metabolismo , Proteínas Fúngicas/metabolismo , Fungos/classificação , Fungos/isolamento & purificação , Fungos/metabolismo , Regulação Fúngica da Expressão Gênica , Extratos Vegetais/metabolismo , Saponinas/metabolismo
5.
Micromachines (Basel) ; 13(5)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35630272

RESUMO

Terahertz imaging technology has shown great potential in many fields. As the core component of terahertz imaging systems, terahertz detectors have received extensive attention. In this paper, a metasurface-based terahertz optomechanical detector is proposed, which is made of two fabrication-friendly materials: gold and silicon nitride. The optomechanical detector is essentially a thermal detector composed of metasurface absorber, bi-material micro-cantilevers and heat insulation pillars. Compared with traditional thermal terahertz detectors, the optomechanical detector employs a metasurface absorber as the terahertz radiation coupler and obtains an absorptivity higher than 90% from 3.24 to 3.98 THz, which is much higher than that of traditional terahertz detectors with absorbers made from natural materials. Furthermore, the detector is fabricated by MEMS process and its responsivity has been verified by a specifically designed optical read-out system; the measured optomechanical responsivity is 24.8 µm/µW, which agrees well with the multi-physics simulation. These results indicated that the detector can be employed as a pixel to form a terahertz focal plane array in the future, and further realize real-time terahertz imaging at room temperature.

6.
Sci Rep ; 7(1): 6922, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761154

RESUMO

One of the long-standing and challenging problems in microwave engineering is the realization of ultra-wideband absorption using extremely-thin structures. Magnetic material can facilitate thickness reduction for microwave absorbers but also bring inherent narrowband admittance matching conundrum originating from its frequency-dispersive permeability and high permittivity. In this paper, we propose a simple and yet effective solution based on the concept of admittance matching with non-Foster metasurface (NFMS). Building on this concept, an ultra-wideband and extremely-thin magnetic absorber is achieved, with a simple structure consisting of a conductor-backed magnetic sheet (CMBS) coated by a NFMS. The NFMS with negatively inductive susceptance can properly cancel its positively frequency-dispersive counterpart from the CMBS so that constructive interference near the absorber can be obtained over a wide frequency band. Furthermore, the NFMS will compensate the surface conductance required for maximum incident power dissipation. As an example, we demonstrate an absorber with one-frequency decade bandwidth and a thickness of only 1/255 wavelength at the lowest operation frequency. The proposed concept enables versatile admittance matching techniques using a single-layered and has the potential to be used in the development of interesting low-profile and broadband microwave devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA