Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Molecules ; 28(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38005182

RESUMO

A phytochemical investigation of the stems of the Arabian plant Artemisia sieberi afforded three new isochlorogenic acid derivatives, namely isochlorogenic acid A-3'-O-ß-glucopyranoside (1), isochlorogenic acid A-3'-O-ß-glucopyranoside methyl ester (2), and isochlorogenic acid C-3'-O-ß-glucopyranoside (3), obtained along with thirteen known secondary metabolites belonging to distinct structural classes. The structures of the new metabolites were elucidated by modern spectroscopic techniues based on high-resolution mass spectrometry (HR-ESIMS) and 1D/2D nuclear magnetic resonance (NMR). All isolated compounds were tested for their potential antimicrobial activity against four different bacterial strains (Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa), in addition to a fungal strain (Candida tropicalis), The results were expressed as the diameter of the clear zone (in millimetres) around each well. Compounds 1 and 3 (isochlorogenic acid A-3'-O-ß-glucopyranoside and isochlorogenic acid C-3'-O-ß-glucopyranoside, respectively) displayed remarkable antifungal effect and potent antibacterial activities against B. subtilis and S. aureus, respectively. 3α,4α-10ß-trihydroxy-8α-acetyloxyguaian-12,6α-olide (6) and angelicoidenol 2-O-ß-d-glucopyranoside (9) emerged as interesting dual antibacterial (selective on P. aeruginosa)/antifungal agents.


Assuntos
Artemisia , Plantas Medicinais , Plantas Medicinais/química , Glucosídeos/farmacologia , Glucosídeos/química , Staphylococcus aureus , Extratos Vegetais/química , Antibacterianos/química , Antifúngicos/farmacologia , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana
2.
Microb Pathog ; 153: 104794, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33581279

RESUMO

Dietary polyphenols in plant extracts are being widely investigated due to their great health-promoting activities and effect on modulating gut ecology. In turn, gut microbiota, plays a vital role in the biological activities of phenolic metabolites, particularly after the intake of food rich in polyphenols, such as plant extracts. However, this two-way relationship between polyphenols and microbiota is poorly understood. We prepared curcuma and mangosteen methanol extracts and fed them to healthy, lean, and obese rats over a period of 10 weeks. Subsequent alterations in the gut microbiota were determined. Overall, Firmicutes were more abundant than Bacteroidetes throughout the experiment. A particular increase of gram-positive cocci species and a significant decrease in both Clostridium and Bacteroides species were noted primarily in the first weeks of both plant extract intake in the control and lean rats. Compared to obese rats fed a regular diet, obese rats fed plant extracts showed an increase in Enterobacteriacea, Clostridium, and Bacteroides species and a decrease in gram-positive cocci in the first weeks of treatment with the last weeks of treatment the results at the species level were inverted.


Assuntos
Garcinia mangostana , Microbioma Gastrointestinal , Animais , Curcuma , Obesidade , Extratos Vegetais/farmacologia , Ratos
3.
Molecules ; 26(8)2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33920952

RESUMO

The increasing prevalence of microbial infections and the emergence of resistance to the currently available antimicrobial drugs urged the development of potent new chemical entities with eminent pharmacokinetic and/or pharmacodynamic profiles. Thus, a series of new indole-triazole conjugates 6a-u was designed and synthesized to be assessed as new antimicrobial candidates using the diameter of the inhibition zone and minimum inhibitory concentration assays against certain microbial strains. Their in vitro antibacterial evaluation revealed good to moderate activity against most of the tested Gram-negative strains with diameter of the inhibition zone (DIZ) values in the range of 11-15 mm and minimum inhibition concentration (MIC) values around 250 µg/mL. Meanwhile, their in vitro antifungal evaluation demonstrated a potent activity against Candida tropicalis with MIC value as low as 2 µg/mL for most of the tested compounds. Moreover, compound 6f is the most potent congener with an MIC value of 2 µg/mL against Candida albicans.


Assuntos
Antifúngicos/farmacologia , Indóis/química , Triazóis/química , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Triazóis/síntese química
4.
Microb Pathog ; 129: 88-92, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30708043

RESUMO

Studies have reported a reciprocal interaction between metabolic disorders and the human gut microbial composition. However, more information is still needed concerning the gut microbiome related to metabolic disorders such as Diabetes. The aim of the present study was to reveal whether stool samples collected from normal individuals and from diabetic subjects with or without retinopathy differ in their gut microbial composition. Data showed higher Bacteroides ratio in diabetic groups gut composition with no significant difference of bacterial strains in diabetic subjects with or without retinopathy compared to lean (control) individuals gut microbiota. These findings indicated that the gut microbiota is altered in accordance to the presence of metabolic disorders. However, further studies have to be elaborated in terms of gut microbial composition with diabetes.


Assuntos
Bacteroidetes/isolamento & purificação , Diabetes Mellitus/microbiologia , Retinopatia Diabética/microbiologia , Fezes/microbiologia , Adulto , Bacteroidetes/classificação , Estudos de Casos e Controles , Estudos Transversais , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Pessoa de Meia-Idade
5.
Cell Mol Biol (Noisy-le-grand) ; 65(1): 1-7, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30782287

RESUMO

Colonization by toxin-producing bacteria in the gut plays a major role in bowel problems in autistic patients. Prebiotics can inhibit the growth of these pathogenic microbes by nourishing beneficial bacteria, while probiotics--live microorganisms--can balance the gut bacteria; thus, both together can maintain healthy bacteria in the gut. The present study was conducted to find the effect of probiotics and prebiotics in balancing the gut flora in a rodent model of autism linked with a clindamycin-induced altered gut. The effects of probiotics and prebiotics on oxidative stress markers in the brain were also evaluated. Eight groups of hamsters were assigned, with Group I serving as the control; Group II, as the autistic model, was treated with 250 mg propionic acid/kg BW/day for 3 days; Group III was treated with clindamycin 30 mg/kg BW for 3 days; Groups IV and V were treated with bee pollen and propolis (supposed prebiotics) at a dose of 250 mg/kg BW/day for 28 days; Group VI and Group VII were treated with Lactobacillus paracaseii and Protexin® (supposed probiotics) for 28 days; and finally, Group VIII was anorectally transplanted with stool from normal animals for 5 days. Remarkable changes were measured in oxidative stress markers, primarily glutathione and vitamin C, in the brains of hamsters in the propionic acid- and clindamycin-treated group. All probiotic/prebiotic treatments showed ameliorative effects; however, lactobacillus had the strongest effect. We conclude that pro-and prebiotic supplements may be effective to revive healthy digestive system function in autistic patients. The disappointing results of the fecal transplants suggest that further study is needed to develop an appropriate technique.


Assuntos
Transtorno Autístico/tratamento farmacológico , Clindamicina/efeitos adversos , Microbioma Gastrointestinal/efeitos dos fármacos , Estresse Oxidativo , Prebióticos , Probióticos/farmacologia , Propionatos/efeitos adversos , Própole/uso terapêutico , Animais , Transtorno Autístico/microbiologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Abelhas/química , Contagem de Colônia Microbiana , Cricetinae , Modelos Animais de Doenças , Masculino , Estresse Oxidativo/efeitos dos fármacos , Curva ROC
6.
Lipids Health Dis ; 18(1): 200, 2019 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-31733650

RESUMO

BACKGROUND: Neuroinflammation plays a major role in the pathogenesis of autism because the cytokine levels are typically disturbed in the brain in autistic patients. Prebiotics-rich diet maintains the healthy gut microbiota and hence can regulate the neuroinflammation indirectly. The study aimed to investigate the role of bee pollen and propolis in ameliorating neuroinflammation, including cytokine levels, in an animal model of autism. METHODS: Hamsters were classified as four groups: Group I, control; Group II, autistic model/animals treated with 250 mg propionic acid (PPA)/kg body weight (BW)/day for 3 days; Group III, animals treated with bee pollen at a dose of 250 mg/kg BW/day for 4 weeks; and Group IV, animals treated with propolis at a dose of 250 mg/kg BW/day for 4 weeks. Neuroinflammatory responses were evaluated using the levels of interferon γ (IFN-γ), interleukin 1 alpha (IL-1α), IL-6, IL-10, IL-12 (p70), vascular endothelial growth factor (VEGF), and tumor necrosis factor α (TNFα). RESULTS: Significant decrease of IL-10 (P<0.026), VEGF (P<0.005), and TNFα(P<0.005) levels and increased IL-1α (P<0.032), IL-6(P<0.028), and IFN-γ (P<0.013) levels were observed between the four studied groups. The neurotoxic effects of PPA was clearly presented as much higher IL-6, as pro-inflammatory cytokine (P<0.05), concomitant with much lower IL-10, as anti-inflammatory cytokine(P<0.015) compared to controls. Both bee pollen and propolis were effective in ameliorating the neurotoxic effects of PPA demonstrating non-significant changes of IL-6 and IL-10 when compared to control healthy hamsters. CONCLUSIONS: Our findings indicate that both bee pollen and propolis protect against neuroinflammation in the rodent model of autism. However, further studies are needed to investigate the clinical benefits of prebiotics-rich diet in neurodevelopmental disorders, such as autism.


Assuntos
Transtorno Autístico/tratamento farmacológico , Disbiose/tratamento farmacológico , Inflamação/tratamento farmacológico , Pólen/metabolismo , Propionatos/farmacologia , Própole/farmacologia , Animais , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/metabolismo , Química Encefálica/efeitos dos fármacos , Citocinas/análise , Modelos Animais de Doenças , Disbiose/induzido quimicamente , Inflamação/induzido quimicamente , Masculino , Mesocricetus
7.
Metab Brain Dis ; 33(6): 1821, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30171513

RESUMO

The original version of this article unfortunately contained a mistake. The family name of the fourth author listed in the title was incorrect, and the correct name is Nadine Moubayed, as noted in the addresses. Her name is now corrected in the author group of this article.

8.
Metab Brain Dis ; 33(6): 1811-1820, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30019266

RESUMO

The present study investigated the therapeutic effects of probiotics on brain intoxication induced by clindamycin and propionic acid (PPA) in hamsters. Fifty golden Syrian hamsters were randomly divided into five experimental groups of ten animals each: (A) control group receiving phosphate buffered saline; (B) oral buffered PPA-treated group being administered with a neurotoxic dose of 250 mg/kg PPA during three days; (C) oral clindamycin-treated group receiving a single dose of 30 mg clindamycin/kg; and (D, E) the two therapeutic groups being administered the same doses of clindamycin and PPA followed by probiotics for three weeks at a daily dose of 0.2 g/kg. Biochemical parameters of energy metabolism and oxidative stress were examined in brain homogenates from all hamsters. The development of pathogenic bacteria was monitored on stool samples from all hamsters. Descriptive changes in fecal microbiota and overgrowth of Clostridium species in clindamycin and PPA treated hamsters were recorded. Interestingly, probiotics were shown effective to restore normal gut microbiota. Clindamycin and PPA treatments caused an elevation in lipid peroxidation and catalase activity, as oxidative stress markers, together with a reduction in GST activity and GSH level. Energy metabolism impairment was ascertained via the activation of creatine kinase and a decrease of lactate dehydrogenase. These findings suggest that bacteria overgrowth caused by PPA and clindamycin was efficient to illustrate signs of neuronal toxicity. The present study indicates that probiotic treatment can improve poor detoxification, oxidative stress, and altered gut microbiota as mechanisms implicated in the etiology of many neurological disorders.


Assuntos
Antibacterianos/toxicidade , Encéfalo/efeitos dos fármacos , Clindamicina/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Probióticos/administração & dosagem , Propionatos/toxicidade , Administração Oral , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Cricetinae , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Microbioma Gastrointestinal/fisiologia , Mesocricetus , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Distribuição Aleatória
9.
Metab Brain Dis ; 33(4): 1155-1164, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29582256

RESUMO

Increasing evidence suggests that the gut microbiota plays a key role in the central nervous system (CNS), and alterations of the gut microbiota composition due to environmental factors can contribute to neurodevelopmental disorders. Animal modeling may help to identify drugs that can normalize the altered gut microbiota and thereby ameliorate abnormal brain signaling pathways. The purpose of the present study was to investigate the therapeutic potency of probiotics such as Bifidobacteria and Lactobacilli on glutamate excitotoxicity as a neurotoxic effect induced by clindamycin and propionic acid (PPA) in juvenile hamsters. Fifty young golden Syrian hamsters weighing between 60 and 70 g were enrolled in the study. The hamsters were randomly divided into five groups, each with ten hamsters. The hamsters in the control group only received phosphate-buffered saline orally. The PPA-treated group received a neurotoxic dose of 250 mg PPA/kg body weight (BW)/day for three days. The clindamycin-treated group received 30 mg clindamycin/kg BW as a single orogastric dose on the day the experiment started. The two therapeutic groups received the same doses of PPA and clindamycin followed by 0.2 g probiotic/kg BW for three weeks. Biochemical parameters related to glutamate excitotoxicity were investigated in brain homogenates from each group of hamsters. Additionally, the development of pathogenic bacteria was monitored in stool samples from all groups. The microbiology results of the present study revealed descriptive changes in the fecal microbiota and the appearance of Clostridium species in the hamsters treated with clindamycin and PPA. Additionally, the effectiveness of the probiotic in the restoration of the normal gut microbiota was demonstrated. Moreover, clindamycin and PPA were found to induce a significant depletion of Mg2+ and γ-aminobutyric acid (GABA) and a remarkable increase in the Na+/Mg2+ and glutamate/GABA ratios but non-significant changes in the absolute levels of K+, Na+ and glutamate. The bacteria overgrowth induced by PPA and clindamycin in the present study effectively showed signs of neuronal toxicity. The study indicates that probiotics can be used safely to ameliorate glutamate excitotoxicity mostly through increasing depleted GABA and Mg2+ and decreasing the excitatory neurotransmitter, glutamate.


Assuntos
Encéfalo/efeitos dos fármacos , Clindamicina/farmacologia , Ácido Glutâmico/metabolismo , Probióticos/farmacologia , Propionatos/farmacologia , Ácido gama-Aminobutírico/metabolismo , Animais , Transtorno Autístico , Encéfalo/metabolismo , Cricetinae , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos
10.
J Enzyme Inhib Med Chem ; 32(1): 1143-1151, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28856929

RESUMO

Elevated blood glucose and increased activities of secreted phospholipase A2 (sPLA2) are strongly linked to coronary heart disease. In this report, our goal was to develop small heterocyclic compound that inhibit sPLA2. The title compounds were also tested against α-glucosidase and α-amylase. This array of enzymes was selected due to their implication in blood glucose regulation and diabetic cardiovascular complications. Therefore, two distinct series of quinoxalinone derivatives were synthesised; 3-[N'-(substituted-benzylidene)-hydrazino]-1H-quinoxalin-2-ones 3a-f and 1-(substituted-phenyl)-5H-[1,2,4]triazolo[4,3-a]quinoxalin-4-ones 4a-f. Four compounds showed promising enzyme inhibitory effect, compounds 3f and 4b-d potently inhibited the catalytic activities of all of the studied proinflammatory sPLA2. Compound 3e inhibited α-glucosidase (IC50 = 9.99 ± 0.18 µM); which is comparable to quercetin (IC50 = 9.93 ± 0.66 µM), a known inhibitor of this enzyme. Unfortunately, all compounds showed weak activity against α-amylase (IC50 > 200 µM). Structure-based molecular modelling tools were utilised to rationalise the SAR compared to co-crystal structures with sPLA2-GX as well as α-glucosidase. This report introduces novel compounds with dual activities on biochemically unrelated enzymes mutually involved in diabetes and its complications.


Assuntos
Inibidores Enzimáticos/farmacologia , Fosfolipases A2 Secretórias/antagonistas & inibidores , Quinoxalinas/farmacologia , alfa-Glucosidases/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estrutura Molecular , Fosfolipases A2 Secretórias/metabolismo , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
11.
Biotechnol Appl Biochem ; 63(3): 378-90, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25828848

RESUMO

In this study, a new strain, ALA1, was identified as Staphylococcus aureus by biochemical tests, and its 16S ribosomal DNA sequence was isolated from dromedary milk. ALA1 lipase production was optimized in shake flask experiments and measured with varying pH (3-11), temperature (20-55 °C) and substrate concentrations. The maximum lipase production was recorded at pH 8 and 30 °C for up to 30 H of culture period for the S. aureus ALA1 strain. Among the substrates tested, selected carbon sources, xylose, nitrogen source, yeast extract, and olive oil (1%) were suitable for maximizing lipase production. The effects of surfactants were investigated and showed that Tween 20, Tween 80, and Triton X-100 prevented lipase production. Interestingly, isolate ALA1 was able to grow in high concentrations of benzene or toluene (up to 50% (v/v)). Moreover, the lipolytic activity of the S. aureus ALA1 lipase was stimulated by diethyl ether, whereas almost 100% of S. aureus ALA1 lipase activity was retained in 25% acetone, acetonitrile, benzene, 2-propanol, ethanol, methanol, or toluene. Because of its stability in organic solvent, the S. aureus ALA1 lipase was used as a biocatalyst to synthesize high levels of added value molecules. S. aureus ALA1 lipase could be considered as an ideal choice for applications in detergent formulations because of its high stability and compatibility with various surfactants, oxidizing agents, and commercial detergents.


Assuntos
Biocatálise , Indústrias , Lipase/química , Lipase/metabolismo , Compostos Orgânicos/farmacologia , Solventes/farmacologia , Staphylococcus aureus/enzimologia , Staphylococcus aureus/isolamento & purificação , Detergentes/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Esterificação , Lipólise , Oxidantes/farmacologia , Tensoativos/farmacologia
13.
Indian J Biochem Biophys ; 52(2): 179-88, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26118130

RESUMO

Lipases are the enzymes of choice for laundry detergent industries, owing to their triglyceride removing ability from the soiled fabric, which eventually reduces the usage of phosphate-based chemical cleansers in the detergent formulation. In this study, a novel thermo-alkaline lipase-producing strain identified as Bacillus stearothermophilus was isolated from the soil samples of olive oil mill. Enhanced lipase production was observed at 55 degrees C, pH 11 and after 48 h of incubation. Among the substrates tested, xylose (a carbon source), peptone (a nitrogen source) and olive oil at a concentration of 1% were suitable substrates for enhancing lipase production. MgSO4 and Tween-80 were suitable substrates for maximizing lipase production. The enzyme was purified to homogeneity by a single CM-Sephadex column chromatography and revealed molecular mass of 67 kDa. The enzyme (BL1) was active over a wide range of pH from 9.0 to 13.0, with an optimum at pH 11.0, exhibited maximal activity at 55 degreesC and retained more than 70% of its activity after incubation at 70 degrees C or pH 13 for 0.5 h or 24 h, respectively. The enzyme hydrolyzed both short and long-chain triacylglycerols at comparable rates. BL1 was studied in a preliminary evaluation for use in detergent formulation solutions. This novel lipase showed extreme stability towards non-ionic and anionic surfactants after pre-incubation for 1 h at 40 degrees C, and good stability towards oxidizing agents. Additionally, the enzyme showed excellent stability and compatibility with various commercial detergents, suggesting its potential as an additive in detergent formulations.


Assuntos
Álcalis/metabolismo , Detergentes/metabolismo , Geobacillus stearothermophilus/enzimologia , Lipase/metabolismo , Estabilidade Enzimática
14.
Nat Prod Res ; : 1-8, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38733626

RESUMO

Plants contain many bioactive compounds with potent antibacterial and efflux pump inhibitory activity (EPI). In this study, gallic acid extracted from pomegranate molasses by analytical HPLC holds promise as an EPI drug for Staphylococcus aureus mediated tetracycline resistance, it lowered the bacterial resistance and reversed the mechanism via tet family efflux pump, using molecular technique and in-silico molecular docking analysis. Extracted gallic acid combined with tetracycline demonstrated a significant decrease in the minimal inhibitory concentration MIC compared to its single activity. Similarly, little growth and lower fluorescence of S. aureus were observed on ethidium bromide (2.5 mg/mL) agar plates, indicating a reversible efflux pump mechanism and a potent EPI activity. Molecular docking demonstrated a promising affinity binding energy between gallic acid and tet efflux genes, opening a new baseline in bacterial infection treatment. PCR for tetK and Qac A/B genes failed to show any relation between tet genes and gallic acid.

15.
Indian J Biochem Biophys ; 50(3): 186-95, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23898481

RESUMO

A phospholipase A2 belonging to IIA group secretory PLA2 was isolated and purified to homogeneity from the intestine of common stingray (Dasyatis pastinaca) using acidic treatment (pH 1.5) and ammonium sulphate precipitation methods combined with single-column ion-exchange chromatography. The purified enzyme was found to be a glycosylated monomeric protein with a molecular mass of about 14 kDa. The stingray sPLA2-IIA had optimum activity at 45 degrees C, unlike known mammalian PLA2-IIAs, which show optimum activity at 37 degrees C. The purified enzyme exhibited a specific activity of 290 U/mg at optimal conditions (pH 9.5 and 45 degrees C) in the presence of 6 mM NaDC and 8 mM CaCl2 with egg yolk as substrate. The NH2-terminal sequence of the enzyme and some protein fragments obtained from its tryptic digestion were also determined. All sequences obtained were similar to those of sPLA2-IIA. The enzyme also showed good stability in the presence of organic solvents, acidic and alkaline pH media and high temperature conditions. Thus, the purified enzyme exhibited a number of unique and promising properties, making it a potential possible candidate for future applications in the treatment of phospholipid-rich industrial effluents and synthesis of useful preparations for the food production and processing industry.


Assuntos
Elasmobrânquios/metabolismo , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/isolamento & purificação , Intestinos/enzimologia , Animais , Ativação Enzimática , Estabilidade Enzimática , Especificidade por Substrato
16.
Nutrients ; 15(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36678232

RESUMO

Obesity prevalence is rising globally, as are the number of chronic disorders connected with obesity, such as diabetes, non-alcoholic fatty liver disease, dyslipidemia, and hypertension. Bariatric surgery is also becoming more common, and it remains the most effective and long-term treatment for obesity. This study will assess the influence of Laparoscopic Sleeve Gastrectomy (LSG) on gut microbiota in people with obesity before and after surgery. The findings shed new light on the changes in gut microbiota in Saudi people with obesity following LSG. In conclusion, LSG may improve the metabolic profile, resulting in decreased fat mass and increased lean mass, as well as improving the microbial composition balance in the gastrointestinal tract, but this is still not equivalent to normal weight microbiology. A range of factors, including patient characteristics, geographic dispersion, type of operation, technique, and nutritional and caloric restriction, could explain differences in abundance between studies. This information could point to a novel and, most likely, tailored strategy in obesity therapy, which could eventually be incorporated into health evaluations and monitoring in preventive health care or clinical medicine.


Assuntos
Cirurgia Bariátrica , Microbioma Gastrointestinal , Laparoscopia , Obesidade Mórbida , Humanos , Obesidade Mórbida/complicações , Obesidade Mórbida/cirurgia , Obesidade Mórbida/metabolismo , Obesidade/complicações , Obesidade/cirurgia , Cirurgia Bariátrica/métodos , Laparoscopia/métodos , Resultado do Tratamento
17.
Saudi J Biol Sci ; 29(4): 2532-2540, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531156

RESUMO

Marine ecosystems are highly dependent on macroalgea in providing food and shelter for aquatic organisms, interacting with many bacteria and mostly producing secondary metabolites of potent therapeutic antibacterial property. Screening of marine microbial secondary metabolites of valuable biotechnological and therapeutical applications are now extensively studied. In this study, Bacillus spp. identified by DNA sequencing and found associated with Turbinaria ornata, was screened and characterized for its cell free supernatant (CFS) possible antimicrobial and antibiofilm applications. Among the 7 microbial isolates tested, CFS greatly affected Bacillus subitilis (12 mm) and inhibited equally the yeast isolates Candida albicans, Candida tropicalis and Candida glabrata (10 mm) and had no or negligible effect on S.aureus, E.coli, P. aeruginosa. As for the CFS antibiofilm activity, no difference was revealed from the positive control. Algal crude extracts (methanol, acetone and aqueous), on the other hand, were similarly tested for their antimicrobial activity against the seven microbial isolates, where highest activity was observed with the aqueous crude extract against Staphylococcus aureus(10 mm) and Pseudomonas aeruginosa (9 mm) compared to the negligible effects of methanol and acetone crude extracts. Chemical analysis was performed to reveal the major constituents of both crude algal extracts and Bacillus spp. CFS. FTIR spectrum of the bacterial CFS indicated the presence of bacteriocin as the major lipopeptide responsible for its biological activity. Whereas, methanol and water crude algal extract GC-MS spectra revealed different chemical groups of various combined therapeutical activity mainly Naphthalene, amino ethane-sulfonic acid, pyrlene, Biotin and mercury chloromethyl correspondingly. Thus, the present study, demonstrated the moderate activity of both crude algal extract and the bacterial CFS, however, further investigations are needed for a better biological activity.

18.
Photodiagnosis Photodyn Ther ; 38: 102847, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35367618

RESUMO

OBJECTIVE: The aim was to assess the influence of a single session of antimicrobial photodynamic therapy (aPDT) as an adjunct to non-surgical scaling and root planing (SRP) in reducing periodontal inflammation and subgingival presence of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in patients with periodontitis. METHODS: Patients diagnosed with periodontitis were included. Information regarding age and gender was recorded using a questionnaire. All patients underwent full mouth non-surgical SRP and the following parameters were assessed at baseline: (a) marginal bone loss (MBL); (b) probing depth (PD) (c) clinical attachment loss (CAL); and (d) presence of supra-and subgingival bleeding and plaque (GI and PI). Identification of A. actinomycetemcomitans and P. gingivalis was performed using polymerase chain reaction. For aPDT (test-group), methylene-blue (MB) (0.005%) was used as photosensitizer and it was applied over and inside the buccal pockets of teeth. Using a Diode laser at 660 nm and 150 mW, irradiation was performed All clinical parameters except for MBL and microbiological evaluations were re-assessed at 3-months of follow-up. Level of significance was set at P<0.05. RESULTS: At 3-months of follow-up A. actinomycetemcomitans and P. gingivalis were identified in significantly lower number of patients in groups 1 and 2 compared with their respective baseline values. Number of patients in whom A. actinomycetemcomitans and P. gingivalis were identified at 3-months of follow-up were similar in both groups. At baseline, there was no statistically significant difference in PI, GI, PD, CAL and MBL among patients in groups 1 and 2. In groups 1 and 2, scores of PI (P<0.001), GI (P<0.001) and PD (P<0.001) were significantly higher at baseline compared with their respective 3-months' follow-up scores. CONCLUSION: One application of aPDT with non-surgical SRP is ineffective in managing periodontal inflammation and presence of P. gingivalis and A. actinomycetemcomitans in periodontitis patients.


Assuntos
Periodontite Crônica , Periodontite , Fotoquimioterapia , Aggregatibacter actinomycetemcomitans , Antibacterianos/uso terapêutico , Periodontite Crônica/tratamento farmacológico , Periodontite Crônica/microbiologia , Raspagem Dentária , Seguimentos , Humanos , Inflamação/tratamento farmacológico , Periodontite/tratamento farmacológico , Fotoquimioterapia/métodos , Porphyromonas gingivalis/efeitos da radiação , Aplainamento Radicular
19.
Saudi J Biol Sci ; 29(4): 2772-2781, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35531187

RESUMO

The green silver nanoparticles (green AgNPs) exhibit an exceptional antimicrobial property against different microbes, including bacteria and fungi. The current study aimed to compare the antifungal activities of both the crude aqueous extract of Portulaca oleracea or different preparations of green AgNPs biosynthesized by mixing that aqueous extract with silver nitrate (AgNO3). Two preparations of the green AgNPs were synthesized either by mixing the aqueous extract of P. oleracea with silver nitrate (AgNO3) (normal AgNPs) or either irradiation of the AgNPs, previously prepared, under 60Co γ-ray using chitosan (gamma-irradiated AgNPs). Characterization of different AgNPs were tested by Zeta potential analyzer, Ultraviolet (UV) Visible Spectroscopy, and Fourier-Transform Infrared (FTIR) spectrometry. Three different plant pathogenic fungi were tested, Curvularia spicifera, Macrophomina phaseolina, and Bipolaris sp. The antifungal activities were evaluated by Transmission Electron Microscope (TEM) for either the crude aqueous extract of P. oleracea at three doses (25%, 50%, and 100%) or the newly biosynthesized AgNPs, normal or gamma-irradiated. With a few exceptions, the comparative analysis revealed that the irradiated green AgNPs at all three concentrations showed a relatively stronger antifungal effect than the normal AgNPs against all the three selected fungal strains. UV-visible spectroscopy of both preparations showed surface plasmon resonance at 421 nm. TEM results showed that both AgNPs were aggregated and characterized by a unique spherical shape, however, the gamma-irradiated AgNPs were smaller than the non-irradiated AgNPs (0.007-0.026 µM vs. 0.009-0.086 µM). TEM photographs of the fungal strains treated with the two AgNPs preparations showed flaccid structures, condensed hyphae, and shrunken surface compared with control cells. The data suggested that the biosynthesized P. oleracea AgNPs have antifungal properties against C. spicifera, M. phaseolina, and Bipolaris sp. These AgNPs may be considered a fungicide to protect different plants against phytopathogenic fungi.

20.
J Mol Neurosci ; 72(2): 372-381, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35094316

RESUMO

Gut microbiota plays a major role in neurological disorders, including autism. Modulation of the gut microbiota through fecal microbiota transplantation (FMT) or probiotic administration, such as Bifidobacteria, is suggested to alleviate autistic symptoms; however, their effects on the brain are not fully examined. We tested both approaches in a propionic acid (PPA) rodent model of autism as treatment strategies. Autism was induced in Sprague-Dawley rats by administering PPA orally (250 mg/kg) for 3 days. Animals were later treated with either saline, FMT, or Bifidobacteria for 22 days. Control animals were treated with saline throughout the study. Social behavior and selected brain biochemical markers related to stress hormones, inflammation, and oxidative stress were assessed. PPA treatment induced social impairments, which was rescued by the treatments. In the brain, Bifidobacteria treatment increased oxytocin relative to control and PPA groups. Moreover, Bifidobacteria treatment rescued the PPA-induced increase in IFN-γ levels. Both treatments increased GST levels, which was diminished by the PPA treatment. These findings indicate the potential of gut microbiota-targeted therapeutics in ameliorating behavioral deficit and underlying neural biochemistry.


Assuntos
Transtorno Autístico , Bifidobacterium , Transplante de Microbiota Fecal , Propionatos , Animais , Comportamento Animal/efeitos dos fármacos , Suplementos Nutricionais , Masculino , Ocitocina/metabolismo , Propionatos/farmacologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA