Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Angew Chem Int Ed Engl ; 61(51): e202210747, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36197755

RESUMO

Herein, we describe the myxobacterial natural product Corramycin isolated from Corallococcus coralloides. The linear peptide structure contains an unprecedented (2R,3S)-γ-N-methyl-ß-hydroxy-histidine moiety. Corramycin exhibits anti-Gram-negative activity against Escherichia coli (E. coli) and is taken up via two transporter systems, SbmA and YejABEF. Furthermore, the Corramycin biosynthetic gene cluster (BGC) was identified and a biosynthesis model was proposed involving a 12-modular non-ribosomal peptide synthetase/polyketide synthase. Bioinformatic analysis of the BGC combined with the development of a total synthesis route allowed for the elucidation of the molecule's absolute configuration. Importantly, intravenous administration of 20 mg kg-1 of Corramycin in an E. coli mouse infection model resulted in 100 % survival of animals without toxic side effects. Corramycin is thus a promising starting point to develop a potent antibacterial drug against hospital-acquired infections.


Assuntos
Antibacterianos , Escherichia coli , Camundongos , Animais , Antibacterianos/química , Policetídeo Sintases , Família Multigênica
2.
J Antimicrob Chemother ; 74(1): 58-65, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30325444

RESUMO

Background: In Gram-negative bacteria, passing through the double membrane barrier to reach the inhibitory concentration inside the bacterium is a pivotal step for antibiotic activity. Spectrofluorimetry has been developed to follow fluoroquinolone accumulation inside bacteria using intrinsic bacterial fluorescence as an internal standard. However, adaptation for non-fluorescent antibiotics is needed; quantitative methods based on MS offer the possibility of expanding the detection range obtained by spectrofluorimetry. Objectives: To validate, with spectrofluorimetry, the use of MS to measure antibiotic accumulation in cells and to determine the relationship between antibiotic concentrations and the amount of intrabacterial accumulation in different efflux backgrounds on the same batch of molecules. Methods: Spectrofluorimetry was performed in parallel with MS on the same samples to measure the ciprofloxacin and fleroxacin accumulation in cells expressing various efflux pump levels. A microplate protocol was set up to determine the antibiotic accumulation as a function of external antibiotic concentrations. Results: A correlation existed between the data obtained with spectrofluorimetry and MS, whatever the efflux pump or tested antibiotic. The results highlighted different dynamics of uptake between ciprofloxacin and fleroxacin as well as the relationship between the level of efflux activity and antibiotic accumulation. Conclusions: We have developed a microplate protocol and cross-validated two complementary methods: spectrofluorimetry, which contains a reliable internal standard; and MS, which allows detection of low antibiotic amounts. These assays allow study of the dose effect and the efflux impact on the intrabacterial accumulation of antibiotics.


Assuntos
Antibacterianos/análise , Ciprofloxacina/análise , Citoplasma/química , Fleroxacino/análise , Bactérias Gram-Negativas/química , Espectrometria de Massas , Espectrometria de Fluorescência , Antibacterianos/farmacocinética , Ciprofloxacina/farmacocinética , Fleroxacino/farmacocinética
3.
Nucleic Acids Res ; 43(17): 8215-26, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26170236

RESUMO

Recent studies strongly suggest that in bacterial cells the order of genes along the chromosomal origin-to-terminus axis is determinative for regulation of the growth phase-dependent gene expression. The prediction from this observation is that positional displacement of pleiotropic genes will affect the genetic regulation and hence, the cellular phenotype. To test this prediction we inserted the origin-proximal dusB-fis operon encoding the global regulator FIS in the vicinity of replication terminus on both arms of the Escherichia coli chromosome. We found that the lower fis gene dosage in the strains with terminus-proximal dusB-fis operons was compensated by increased fis expression such that the intracellular concentration of FIS was homeostatically adjusted. Nevertheless, despite unchanged FIS levels the positional displacement of dusB-fis impaired the competitive growth fitness of cells and altered the state of the overarching network regulating DNA topology, as well as the cellular response to environmental stress, hazardous substances and antibiotics. Our finding that the chromosomal repositioning of a regulatory gene can determine the cellular phenotype unveils an important yet unexplored facet of the genetic control mechanisms and paves the way for novel approaches to manipulate bacterial physiology.


Assuntos
Posicionamento Cromossômico , Cromossomos Bacterianos , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Fator Proteico para Inversão de Estimulação/genética , Regulação Bacteriana da Expressão Gênica , Antibacterianos/farmacologia , DNA Super-Helicoidal/análise , Escherichia coli K12/efeitos dos fármacos , Escherichia coli K12/crescimento & desenvolvimento , Proteínas de Escherichia coli/biossíntese , Fator Proteico para Inversão de Estimulação/biossíntese , Genes Reguladores , Óperon , Estresse Oxidativo , Fenótipo
4.
J Bacteriol ; 197(13): 2217-2228, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25917903

RESUMO

UNLABELLED: Analysis of the genome sequence of Pseudomonas aeruginosa PA14 revealed the presence of an operon encoding an ABC-type transporter (NppA1A2BCD) showing homology to the Yej transporter of Escherichia coli. The Yej transporter is involved in the uptake of the peptide-nucleotide antibiotic microcin C, a translation inhibitor that targets the enzyme aspartyl-tRNA synthetase. Furthermore, it was recently shown that the Opp transporter from P. aeruginosa PAO1, which is identical to Npp, is required for uptake of the uridyl peptide antibiotic pacidamycin, which targets the enzyme translocase I (MraY), which is involved in peptidoglycan synthesis. We used several approaches to further explore the substrate specificity of the Npp transporter. Assays of growth in defined minimal medium containing peptides of various lengths and amino acid compositions as sole nitrogen sources, as well as Biolog Phenotype MicroArrays, showed that the Npp transporter is not required for di-, tri-, and oligopeptide uptake. Overexpression of the npp operon increased susceptibility not just to pacidamycin but also to nickel chloride and the peptidyl nucleoside antibiotic blasticidin S. Furthermore, heterologous expression of the npp operon in a yej-deficient mutant of E. coli resulted in increased susceptibility to albomycin, a naturally occurring sideromycin with a peptidyl nucleoside antibiotic. Additionally, heterologous expression showed that microcin C is recognized by the P. aeruginosa Npp system. Overall, these results suggest that the NppA1A2BCD transporter is involved in the uptake of peptidyl nucleoside antibiotics by P. aeruginosa PA14. IMPORTANCE: One of the world's most serious health problems is the rise of antibiotic-resistant bacteria. There is a desperate need to find novel antibiotic therapeutics that either act on new biological targets or are able to bypass known resistance mechanisms. Bacterial ABC transporters play an important role in nutrient uptake from the environment. These uptake systems could also be exploited by a Trojan horse strategy to facilitate the transport of antibiotics into bacterial cells. Several natural antibiotics mimic substrates of peptide uptake routes. In this study, we analyzed an ABC transporter involved in the uptake of nucleoside peptidyl antibiotics. Our data might help to design drug conjugates that may hijack this uptake system to gain access to cells.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Pseudomonas aeruginosa/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Bacteriocinas/metabolismo , Transporte Biológico , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Nucleosídeos/metabolismo , Pseudomonas aeruginosa/genética
5.
J Bacteriol ; 196(16): 2944-53, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24914179

RESUMO

CS31A, a K88-related surface antigen specified by the clp operon, is a member of the type P family of adhesive factors and plays a key role in the establishment of disease caused by septicemic and enterotoxigenic Escherichia coli strains. Its expression is under the control of methylation-dependent transcriptional regulation, for which the leucine-responsive regulatory protein (Lrp) is essential. CS31A is preferentially in the OFF state and exhibits distinct regulatory features compared to the regulation of other P family members. In the present study, surface plasmon resonance and DNase I protection assays showed that Lrp binds to the distal moiety of the clp regulatory region with low micromolar affinity compared to its binding to the proximal moiety, which exhibits stronger, nanomolar affinity. The complex formation was also influenced by the addition of PapI or FooI, which increased the affinity of Lrp for the clp distal and proximal regions and was required to induce phase variation. The influence of PapI or FooI, however, was predominantly associated with a more complete shutdown of clp expression, in contrast to what has previously been observed with AfaF (a PapI ortholog). Taken together, these results suggest that the preferential OFF state observed in CS31A cells is mainly due to the weak interaction of the leucine-responsive regulatory protein with the clp distal region and that the PapI homolog favors the OFF phase. Within the large repertoire of fimbrial variants in the P family, our study illustrates that having a fimbrial operon that lacks its own PapI ortholog allows it to be more flexibly regulated by other orthologs in the cell.


Assuntos
Antígenos de Bactérias/biossíntese , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteína Reguladora de Resposta a Leucina/metabolismo , Proteínas Repressoras/metabolismo , Pegada de DNA , DNA Bacteriano/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Ressonância de Plasmônio de Superfície
6.
Eur J Med Chem ; 265: 116097, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38157595

RESUMO

Tridecaptins comprise a class of linear cationic lipopeptides with an N-terminal fatty acyl moiety. These 13-mer antimicrobial peptides consist of a combination of d- and l-amino acids, conferring increased proteolytic stability. Intriguingly, they are biosynthesized by non-ribosomal peptide synthetases in the same bacterial species that also produce the cyclic polymyxins displaying similar fatty acid tails. Previously, the des-acyl analog of TriA1 (termed H-TriA1) was found to possess very weak antibacterial activity, albeit it potentiated the effect of several antibiotics. In the present study, two series of des-acyl tridecaptins were explored with the aim of improving the direct antibacterial effect. At the same time, overall physico-chemical properties were modulated by amino acid substitution(s) to diminish the risk of undesired levels of hemolysis and to avoid an impairment of mammalian cell viability, since these properties are typically associated with highly hydrophobic cationic peptides. Microbiology and biophysics tools were used to determine bacterial uptake, while circular dichroism and isothermal calorimetry were used to probe the mode of action. Several analogs had improved antibacterial activity (as compared to that of H-TriA1) against Enterobacteriaceae. Optimization enabled identification of the lead compound 29 that showed a good ADMET profile as well as in vivo efficacy in a variety of mouse models of infection.


Assuntos
Antibacterianos , Bactérias , Peptídeos , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Ácidos Graxos/química , Lipopeptídeos/farmacologia , Lipopeptídeos/química , Mamíferos , Testes de Sensibilidade Microbiana , Cátions/química
7.
Mol Microbiol ; 83(5): 894-907, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22304382

RESUMO

The Escherichia coli Adhesin Involved in Diffuse Adherence (AIDA-I) is a multifunctional protein that belongs to the family of monomeric autotransporters. This adhesin can be glycosylated by the AIDA-associated heptosyltransferase (Aah). Glycosylation appears to be restricted to the extracellular domain of AIDA-I, which comprises imperfect repeats of a 19-amino-acid consensus sequence and is predicted to form a ß-helix. Here, we show that Aah homologues can be found in many Gram-negative bacteria, including Citrobacter rodentium. We demonstrated that an AIDA-like protein is glycosylated in this species by the Aah homologue. We then investigated the substrate recognition mechanism of the E. coli Aah heptosyltransferase. We found that a peptide corresponding to one repeat of the 19-amino-acid consensus is sufficient for recognition and glycosylation by Aah. Mutagenesis studies suggested that, unexpectedly, Aah recognizes a structural motif typical of ß-helices, but not a specific sequence. In agreement with this finding, we observed that the extracellular domain of the Bordetella pertussis pertactin, a ß-helical polypeptide lacking the 19-amino-acid consensus sequence, could be glycosylated by Aah. Overall, our findings suggest that Aah represents the prototype of a new large family of bacterial protein O-glycosyltransferases that modify various substrates recognized through a structural motif.


Assuntos
Adesinas de Escherichia coli/química , Motivos de Aminoácidos , Proteínas de Bactérias/química , Escherichia coli/enzimologia , Glicosiltransferases/química , Bordetella pertussis/enzimologia , Citrobacter rodentium/enzimologia , Sequência Consenso , Glicosilação , Filogenia , Alinhamento de Sequência , Especificidade por Substrato
8.
Microbiol Spectr ; 11(3): e0224722, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140391

RESUMO

After the first total synthesis combined with structure revision, we performed thorough in vitro and in vivo profiling of the underexplored tetrapeptide GE81112A. From the determination of the biological activity spectrum and physicochemical and early absorption-distribution-metabolism-excretion-toxicity (eADMET) properties, as well as in vivo data regarding tolerability and pharmacokinetics (PK) in mice and efficacy in an Escherichia coli-induced septicemia model, we were able to identify the critical and limiting parameters of the original hit compound. Thus, the generated data will serve as the basis for further compound optimization programs and developability assessments to identify candidates for preclinical/clinical development derived from GE81112A as the lead structure. IMPORTANCE The spread of antimicrobial resistance (AMR) is becoming a more and more important global threat to human health. With regard to current medical needs, penetration into the site of infection represents the major challenge in the treatment of infections caused by Gram-positive bacteria. Considering infections associated with Gram-negative bacteria, resistance is a major issue. Obviously, novel scaffolds for the design of new antibacterials in this arena are urgently needed to overcome this crisis. Such a novel potential lead structure is represented by the GE81112 compounds, which inhibit protein synthesis by interacting with the small 30S ribosomal subunit using a binding site distinct from that of other known ribosome-targeting antibiotics. Therefore, the tetrapeptide antibiotic GE81112A was chosen for further exploration as a potential lead for the development of antibiotics with a new mode of action against Gram-negative bacteria.


Assuntos
Antibacterianos , Infecções por Escherichia coli , Animais , Humanos , Camundongos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Infecções por Escherichia coli/tratamento farmacológico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
9.
Infect Immun ; 80(8): 2802-15, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22665376

RESUMO

The pstSCAB-phoU operon encodes the phosphate-specific transport system (Pst). Loss of Pst constitutively activates the Pho regulon and decreases bacterial virulence. However, specific mechanisms underlying decreased bacterial virulence through inactivation of Pst are poorly understood. In uropathogenic Escherichia coli (UPEC) strain CFT073, inactivation of pst decreased urinary tract colonization in CBA/J mice. The pst mutant was deficient in production of type 1 fimbriae and showed decreased expression of the fimA structural gene which correlated with differential expression of the fimB, fimE, ipuA, and ipbA genes, encoding recombinases, mediating inversion of the fim promoter. The role of fim downregulation in attenuation of the pst mutant was confirmed using a fim phase-locked-on derivative, which demonstrated a significant gain in virulence. In addition, the pst mutant was less able to invade human bladder epithelial cells. Since type 1 fimbriae contribute to UPEC virulence by promoting colonization and invasion of bladder cells, the reduced bladder colonization by the pst mutant is predominantly attributed to downregulation of these fimbriae. Elucidation of mechanisms mediating the control of type 1 fimbriae through activation of the Pho regulon in UPEC may open new avenues for therapeutics or prophylactics against urinary tract infections.


Assuntos
Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Fímbrias/metabolismo , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/metabolismo , Animais , Aderência Bacteriana , Linhagem Celular , Proteínas de Escherichia coli/genética , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos CBA , Mutação , Bexiga Urinária/citologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/ultraestrutura
10.
Mol Microbiol ; 81(5): 1286-99, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21752106

RESUMO

F165(1) and the pyelonephritis-associated pili (Pap) are two members of the type P family of adhesive factors that play a key role in the establishment of disease caused by extraintestinal Escherichia coli (ExPEC) strains. They are both under the control of an epigenetic and reversible switch that defines the number of fimbriated (ON) and afimbriated (OFF) cells within a clonal population. Our present study demonstrates that the high level of ON cells found during F165(1) phase variation is due to altered stability of the DNA complex formed by the leucine-responsive regulatory protein (Lrp) at its repressor binding sites 1-3; after each cell cycle, complex formation is also modulated by the local regulator FooI (homologue to PapI) which promotes the transit of Lrp towards its activator binding sites 4-6. Furthermore, we identified two nucleotides (T490, G508) surrounding the Lrp binding site 1 that are critical to maintaining a high OFF to ON switch rate during F165(1) phase variation, as well as switching Pap fimbriae towards the OFF state.


Assuntos
DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Fímbrias Bacterianas/metabolismo , Proteína Reguladora de Resposta a Leucina/genética , Proteína Reguladora de Resposta a Leucina/metabolismo , Antígenos de Bactérias/metabolismo , Sítios de Ligação/genética , Ciclo Celular , DNA Bacteriano/genética , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Fímbrias/biossíntese , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Regulação Bacteriana da Expressão Gênica
11.
Appl Environ Microbiol ; 78(13): 4597-605, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22522689

RESUMO

Autotransporters are a large family of virulence factors of Gram-negative bacterial pathogens. The autotransporter adhesin involved in diffuse adherence (AIDA-I) is an outer membrane protein of Escherichia coli, which allows binding to epithelial cells as well as the autoaggregation of bacteria. AIDA-I is glycosylated by a specific heptosyltransferase encoded by the aah gene that forms an operon with the aidA gene. aidA is highly prevalent in strains that cause disease in pigs. Nevertheless, there are only two published whole-length sequences for this gene. In this study, we sequenced the aah and aidA genes of 24 aidA-positive porcine strains harboring distinct virulence factor profiles. We compared the obtained sequences and performed phylogenetic and pulsed-field electrophoresis analyses. Our results suggest that there are at least 3 different alleles for aidA, which are associated with distinct virulence factor profiles. The genes are found on high-molecular-weight plasmids and seem to evolve via shuffling mechanisms, with one of the sequences showing evidence of genetic recombination. Our work suggests that genetic plasticity allows the evolution of aah-aidA alleles that are selected during pathogenesis.


Assuntos
Adesinas de Escherichia coli/genética , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Escherichia coli/patogenicidade , Doenças dos Suínos/microbiologia , Fatores de Virulência/genética , Alelos , Animais , Análise por Conglomerados , Embaralhamento de DNA , DNA Bacteriano/química , DNA Bacteriano/genética , Eletroforese em Gel de Campo Pulsado , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Evolução Molecular , Glicosiltransferases/genética , Dados de Sequência Molecular , Tipagem Molecular , Filogenia , Plasmídeos , Análise de Sequência de DNA , Suínos
12.
J Biol Chem ; 285(14): 10616-26, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20123991

RESUMO

Bacteria mostly live as multicellular communities, although they are unicellular organisms, yet the mechanisms that tie individual bacteria together are often poorly understood. The adhesin involved in diffuse adherence (AIDA-I) is an adhesin of diarrheagenic Escherichia coli strains. AIDA-I also mediates bacterial auto-aggregation and biofilm formation and thus could be important for the organization of communities of pathogens. Using purified protein and whole bacteria, we provide direct evidence that AIDA-I promotes auto-aggregation by interacting with itself. Using various biophysical and biochemical techniques, we observed a conformational change in the protein during AIDA-AIDA interactions, strengthening the notion that this is a highly specific interaction. The self-association of AIDA-I is of high affinity but can be modulated by sodium chloride. We observe that a bile salt, sodium deoxycholate, also prevents AIDA-I oligomerization and bacterial auto-aggregation. Thus, we propose that AIDA-I, and most likely other similar autotransporters such as antigen 43 (Ag43) and TibA, organize bacterial communities of pathogens through a self-recognition mechanism that is sensitive to the environment. This could permit bacteria to switch between multicellular and unicellular lifestyles to complete their infection.


Assuntos
Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Aderência Bacteriana/fisiologia , Escherichia coli/metabolismo , Adesinas de Escherichia coli/isolamento & purificação , Aderência Bacteriana/efeitos dos fármacos , Reagentes de Ligações Cruzadas/farmacologia , Ácido Desoxicólico/farmacologia , Escherichia coli/genética , Conformação Molecular , Multimerização Proteica , Cloreto de Sódio/farmacologia , Ressonância de Plasmônio de Superfície
13.
Infect Immun ; 79(5): 1826-32, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343356

RESUMO

Some enterotoxigenic Escherichia coli strains express the TibA adhesin/invasin, a multifunctional autotransporter that mediates the autoaggregation of bacteria, biofilm formation, adhesion to cultured epithelial cells, and invasion of these cells. To elucidate the structure-function relationship in TibA, we generated mutants by transposon-based linker scanning mutagenesis and by site-directed mutagenesis. Several insertion mutants had a defect in either adhesion or autoaggregation. Mutants with a defect in autoaggregation were found in the N-terminal half of the extracellular domain, while mutants with a defect in adhesion were found in the C-terminal half. The deletion of the putative N-terminal autoaggregation domain abolished the autoaggregation of the bacteria but did not affect adhesion. The deletion of a proline-rich region located at the C terminus of the extracellular domain abolished the adhesion properties of TibA but did not affect invasion. This finding suggests that adhesion and invasion may rely on distinct mechanisms. Thus, our results reveal that TibA possesses a modular organization, with the extracellular domain being separated into an autoaggregation module and an adhesion module.


Assuntos
Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Escherichia coli/patogenicidade , Adesinas de Escherichia coli/genética , Aderência Bacteriana/fisiologia , Immunoblotting , Mutagênese Sítio-Dirigida , Mutação , Reação em Cadeia da Polimerase , Relação Estrutura-Atividade
14.
J Biol Chem ; 284(25): 17340-17351, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19398552

RESUMO

The cleavage of the autotransporter adhesin involved in diffuse adherence (AIDA-I) of Escherichia coli yields a membrane-embedded fragment, AIDAc, and an extracellular fragment, the mature AIDA-I adhesin. The latter remains noncovalently associated with AIDAc but can be released by heat treatment. In this study we determined the mechanism of AIDA-I cleavage. We showed that AIDA-I processing is an autocatalytic event by monitoring the in vitro cleavage of an uncleaved mutant protein isolated from inclusion bodies. Furthermore, by following changes in circular dichroism spectra and protease resistance of the renaturated protein, we showed that the cleavage of the protein is correlated with folding. With site-directed deletions, we showed that the catalytic activity of the protein lies in a region encompassing amino acids between Ala-667 and Thr-953, which includes the conserved junction domain of some autotransporters. With site-directed point mutations, we also found that Asp-878 and Glu-897 are involved in the processing of AIDA-I and that a mutation preserving the acidic side chain of Asp-878 was tolerated, giving evidence that this carboxylic acid group is directly involved in catalysis. Last, we confirmed that cleavage of AIDA-I is intramolecular. Our results unveil a new mechanism of auto-processing in the autotransporter family.


Assuntos
Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Adesinas de Escherichia coli/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Primers do DNA/genética , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
15.
Mol Microbiol ; 70(1): 221-35, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18713318

RESUMO

Lipopolysaccharides (LPS) and Apx toxins are major virulence factors of Actinobacillus pleuropneumoniae, a pathogen of the respiratory tract of pigs. Here, we evaluated the effect of LPS core truncation in haemolytic and cytotoxic activities of this microorganism. We previously generated a highly attenuated galU mutant of A. pleuropneumoniae serotype 1 that has an LPS molecule lacking the GalNAc-Gal II-Gal I outer core residues. Our results demonstrate that this mutant exhibits wild-type haemolytic activity but is significantly less cytotoxic to porcine alveolar macrophages. However, no differences were found in gene expression and secretion of the haemolytic and cytotoxic toxins ApxI and ApxII, both secreted by A. pleuropneumoniae serotype 1. This suggests that the outer core truncation mediated by the galU mutation affects the toxins in their cytotoxic activities. Using both ELISA and surface plasmon resonance binding assays, we demonstrate a novel interaction between LPS and the ApxI and ApxII toxins via the core oligosaccharide. Our results indicate that the GalNAc-Gal II-Gal I trisaccharide of the outer core is fundamental to mediating LPS/Apx interactions. The present study suggests that a lack of binding between LPS and ApxI/II affects the cytotoxicity and virulence of A. pleuropneumoniae.


Assuntos
Actinobacillus pleuropneumoniae/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Hemolisinas/metabolismo , Lipopolissacarídeos/metabolismo , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/metabolismo , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Clonagem Molecular , Citotoxinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Genes Bacterianos , Macrófagos Alveolares/microbiologia , Mutação , Domínios e Motivos de Interação entre Proteínas , RNA Bacteriano/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ressonância de Plasmônio de Superfície , Suínos , Doenças dos Suínos/microbiologia , Virulência , Fatores de Virulência/metabolismo
16.
J Bacteriol ; 190(15): 5256-64, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18515419

RESUMO

Environmental phosphate is an important signal for microorganism gene regulation, and it has recently been shown to trigger some key bacterial virulence mechanisms. In many bacteria, the Pho regulon is the major circuit involved in adaptation to phosphate limitation. The Pho regulon is controlled jointly by the two-component regulatory system PhoR/PhoB and by the phosphate-specific transport (Pst) system, which both belong to the Pho regulon. We showed that a pst mutation results in virulence attenuation in extraintestinal pathogenic Escherichia coli (ExPEC) strains. Our results indicate that the bacterial cell surface of the pst mutants is altered. In this study, we show that pst mutants of ExPEC strains display an increased sensitivity to different cationic antimicrobial peptides and vancomycin. Remarkably, the hexa-acylated 1-pyrophosphate form of lipid A is significantly less abundant in pst mutants. Among differentially expressed genes in the pst mutant, lpxT coding for an enzyme that transfers a phosphoryl group to lipid A, forming the 1-diphosphate species, was found to be downregulated. Our results strongly suggest that the Pho regulon is involved in lipid A modifications, which could contribute to bacterial surface perturbations. Since the Pho regulon and the Pst system are conserved in many bacteria, such a lipid A modification mechanism could be widely distributed among gram-negative bacterial species.


Assuntos
Difosfatos/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipídeo A/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Regulon , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Parede Celular/química , Cromatografia em Camada Fina , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/genética , Deleção de Genes , Lipídeo A/química , Proteínas de Membrana Transportadoras/genética , Testes de Sensibilidade Microbiana , Viabilidade Microbiana , Estrutura Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Vancomicina/farmacologia
17.
Res Microbiol ; 159(7-8): 537-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18657609

RESUMO

The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is an outer membrane autotransporter protein and one of the few glycosylated proteins found in Escherichia coli. O-glycosylation is mediated by the product of the aah gene, which codes for a heptosyltransferase that uses ADP-glycero-manno-heptose precursors from the LPS biosynthesis pathway. Little else is known about Aah and mechanisms involved in modification of AIDA-I. We observed that Aah is mainly found in an insoluble fraction and, by deletion of the AIDA-I signal sequence or by blocking sec-translocation machinery with sodium azide, we showed that glycosylation occurs in the cytoplasm of bacteria independently of secretion. Since AIDA-I harbors an N-terminal extension in its signal sequence, we wondered whether glycosylation requires this unusual sequence. We observed that, while deletion of the N-terminal extension affected the expression level of AIDA-I, the protein was still exported to the outer membrane and glycosylated. Modification of a secreted protein in the cytoplasm raises several mechanistic questions.


Assuntos
Adesinas de Escherichia coli/metabolismo , Citoplasma/metabolismo , Escherichia coli/metabolismo , Adesinas de Escherichia coli/química , Adesinas de Escherichia coli/genética , Sequência de Aminoácidos , Citoplasma/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicosilação , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Dados de Sequência Molecular , Sinais Direcionadores de Proteínas , Transporte Proteico , Deleção de Sequência
18.
FEMS Microbiol Lett ; 281(1): 30-5, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18279334

RESUMO

Escherichia coli heat-STb is an important cause of diarrhea in piglets. STb was shown to interact specifically with sulfatide (3'-sulfogalactosyl-ceramide) present on the surface of epithelial cells of piglet jejunum. Basic data are lacking on STb binding to sulfatide in solution and more precisely on the possible inhibition of this interaction. Using surface plasmon resonance technology, we compare binding of STb to sulfatide and other glycoshingolipids previously shown, with a multiplate-binding assay, to also interact to various degrees with the enterotoxin. In addition, inhibition of STb-sulfatide binding was studied using free galactose, galactose-sulfate residues and a polymer of sulfated galactans known as carragenan. We determined a dissociation constant of 2.4+/-0.61 nM for the STb-sulfatide interaction. These data indicated that STb was binding to sulfatide with greater affinity than previously determined using radiolabeled toxin. Much lower affinities were observed for lactoceramide and glucoceramide. The binding of STb to sulfatide was clearly inhibited by lambda-carragenan but not by galactose, 4-SO(4)-galactose or 6-SO(4)-galactose. Inhibition of STb binding to its receptor was achieved using lambda-carragenan at picomolar concentrations. Then, using IPEC-J2 cells in culture and flow cytometry, we showed that lambda-carragenan was able to inhibit the permeabilization process associated with STb.


Assuntos
Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Carragenina/farmacologia , Enterotoxinas/antagonistas & inibidores , Enterotoxinas/metabolismo , Inibidores Enzimáticos/farmacocinética , Sulfoglicoesfingolipídeos/metabolismo , Animais , Linhagem Celular , Proteínas de Escherichia coli , Citometria de Fluxo , Galactose/análogos & derivados , Galactose/metabolismo , Galactose/farmacologia , Glicoesfingolipídeos/metabolismo , Cinética , Permeabilidade , Ligação Proteica , Ressonância de Plasmônio de Superfície , Suínos
19.
J Med Microbiol ; 57(Pt 7): 887-890, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18566148

RESUMO

To investigate the presence and frequency of estB variant(s), a collection of 100 STb-positive enterotoxigenic Escherichia coli (ETEC) strains isolated from 1980 to 2007 inclusively and randomly selected from diseased pigs in Québec, Canada, was analysed. A wide diversity of virulence gene profiles (virotypes) was detected in the strain collection. The estB gene was amplified by PCR using primers designed from the signal sequence and the C-terminal end, and the amplified fragment was sequenced using the forward primer. The translated DNA sequence revealed a His(12)-->Asn change in 23 of the 100 ETEC isolates tested. The STb-variant strains were observed throughout the sampling period covered in the study. No other STb-variant type was found in this study. All 23 variant strains were also positive for the STa enterotoxin and were resistant to tetracycline, as for strain 2173. The STb variant was associated with Stx2-positive strains (5/6) and STa : STb strains that did not harbour any of the tested porcine fimbrial adhesins (13/17). The remaining variant strains were associated with fimbriae F4 (1/40), F5 (1/6), F6 (1/1) and F18 (2/7; excluding F18 : Stx2 strains).


Assuntos
Toxinas Bacterianas/genética , Escherichia coli Enterotoxigênica/classificação , Escherichia coli Enterotoxigênica/patogenicidade , Enterotoxinas/genética , Infecções por Escherichia coli/veterinária , Variação Genética , Doenças dos Suínos/microbiologia , Animais , Toxinas Bacterianas/classificação , Escherichia coli Enterotoxigênica/genética , Escherichia coli Enterotoxigênica/isolamento & purificação , Enterotoxinas/classificação , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/genética , Reação em Cadeia da Polimerase , Quebeque , Análise de Sequência de DNA , Suínos , Virulência/genética , Fatores de Virulência/genética
20.
Sci Rep ; 8(1): 18043, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575780

RESUMO

The human ß-defensin-1 (HBD1) is an antimicrobial peptide constitutively expressed by epithelial cells at mucosal surfaces. In addition to its microbicidal properties, the loss of HBD1 expression in several cancers suggests that it may also have an anti-tumor activity. Here, we investigated the link between HBD1 expression and cancer signaling pathways in the human colon cancer cell lines TC7 and HT-29, and in normal human colonic primary cells, using a mini-gut organoid model. Using available datasets from patient cohorts, we found that HBD1 transcription is decreased in colorectal cancer. We demonstrated that inhibiting the Epidermal Growth Factor Receptor (EGFR) increased HBD1 expression, whereas activating EGFR repressed HBD1 expression, through the MEKK1/2-ERK1/2 pathway that ultimately regulates MYC. We finally present evidences supporting a role of MYC, together with the MIZ1 coregulator, in HBD1 regulation. Our work uncovers the role and deciphers the function of the EGFR-ERK-MYC axis as a repressor of HBD1 expression and contributes to the understanding of HBD1 suppression observed in colorectal cancer.


Assuntos
Colo/metabolismo , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , beta-Defensinas/genética , Células CACO-2 , Células Cultivadas , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação para Baixo/genética , Receptores ErbB/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Mucosa Intestinal/metabolismo , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA