Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 12(12): e0190121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267395

RESUMO

Ultraplankton [heterotrophic prokaryotes and ultraphytoplankton (<10 µm)] were monitored weekly over two years (2009 & 2010) in a coastal area of the NW Mediterranean Sea. Six clusters were differentiated by flow cytometry on the basis of their optical properties, two heterotrophic prokaryote (HP) subgroups labelled LNA and HNA (low and high nucleic acid content respectively), Prochlorococcus, Synechococcus, autotrophic picoeukaryotes and nanoeukaryotes. HP represented an important component of the microbial assemblage over the survey with relatively small abundance variation through seasons. The carbon biomass ratio HP/ultraphytoplankton averaged 0.45, however this ratio exceeded 1 during spring. Ultraphytoplankton biomass made about 50% of the total autotrophic carbon estimates but this contribution increased up to 97% and 67% during the 2009 and 2010 spring periods respectively. Within ultraphytoplankton, nanoeukaryote represent the most important ultraphytoplankton group in terms of autotrophic carbon biomass (up to 70%). Picoeukaryote maximum abundance occurred in winter. Synechococcus was the most abundant population (maximum 1.2 x 10 5 cells cm-3) particularly in spring where it represented up to 54% of ultraphytoplankton carbon biomass. The warmer winter-spring temperatures and the lengthening of the stratification period created a favorable situation for the earlier appearance of Synechococcus and its persistence throughout summer, paralleling Prochlorococcus development. Prochlorococcus was dominant over summer and autumn with concentrations up to 1.0 × 10 5 cells cm-3. While the abundance of Synechococcus throughout survey was of the same order as that reported in western Mediterranean Sea, Prochlorococcus was more abundant and similar to the more typical oligotrophic and warm waters. The abundance variation of the ultraplankton components through the survey was relatable to variations in the hydrological and nutrient conditions.


Assuntos
Ecossistema , Plâncton/classificação , Biomassa , Clorofila/metabolismo , Clorofila A , Citometria de Fluxo , Mar Mediterrâneo , Plâncton/crescimento & desenvolvimento , Plâncton/metabolismo , Análise de Célula Única
2.
PLoS One ; 10(3): e0119219, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780912

RESUMO

Ecological succession provides a widely accepted description of seasonal changes in phytoplankton and mesozooplankton assemblages in the natural environment, but concurrent changes in smaller (i.e. microbes) and larger (i.e. macroplankton) organisms are not included in the model because plankton ranging from bacteria to jellies are seldom sampled and analyzed simultaneously. Here we studied, for the first time in the aquatic literature, the succession of marine plankton in the whole-plankton assemblage that spanned 5 orders of magnitude in size from microbes to macroplankton predators (not including fish or fish larvae, for which no consistent data were available). Samples were collected in the northwestern Mediterranean Sea (Bay of Villefranche) weekly during 10 months. Simultaneously collected samples were analyzed by flow cytometry, inverse microscopy, FlowCam, and ZooScan. The whole-plankton assemblage underwent sharp reorganizations that corresponded to bottom-up events of vertical mixing in the water-column, and its development was top-down controlled by large gelatinous filter feeders and predators. Based on the results provided by our novel whole-plankton assemblage approach, we propose a new comprehensive conceptual model of the annual plankton succession (i.e. whole plankton model) characterized by both stepwise stacking of four broad trophic communities from early spring through summer, which is a new concept, and progressive replacement of ecological plankton categories within the different trophic communities, as recognised traditionally.


Assuntos
Modelos Biológicos , Plâncton/fisiologia , Citometria de Fluxo , Cadeia Alimentar , Mar Mediterrâneo , Plâncton/classificação , Dinâmica Populacional , Estações do Ano
3.
Front Microbiol ; 5: 387, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161647

RESUMO

Most of phytoplankton influence is barely understood at the sub meso scale and daily scale because of the lack of means to simultaneously assess phytoplankton functionality, dynamics and community structure. For a few years now, it has been possible to address this objective with an automated in situ high frequency sampling strategy. In order to study the influence of environmental short-term events (nutrients, wind speed, precipitation, solar radiation, temperature, and salinity) on the onset of the phytoplankton bloom in the oligotrophic Bay of Villefranche-sur-Mer (NW Mediterranean Sea), a fully remotely controlled automated flow cytometer (CytoSense) was deployed on a solar-powered platform (EOL buoy, CNRS-Mobilis). The CytoSense carried out single-cell analyses on particles (1-800 µm in width, up to several mm in length), recording optical pulse shapes when analyzing several cm(3). Samples were taken every 2 h in the surface waters during 2 months. Up to 6 phytoplankton clusters were resolved based on their optical properties (PicoFLO, Picoeukaryotes, Nanophytoplankton, Microphytoplankton, HighSWS, HighFLO). Three main abundance pulses involving the 6 phytoplankton groups monitored indicated that the spring bloom not only depends on light and water column stability, but also on short-term events such as wind events and precipitation followed by nutrient pulses. Wind and precipitation were also determinant in the collapse of the clusters' abundances. These events occurred within a couple of days, and phytoplankton abundance reacted within days. The third abundance pulse could be considered as the spring bloom commonly observed in the area. The high frequency data-set made it possible to study the phytoplankton cell cycle based on daily cycles of forward scatter and abundance. The combination of daily cell cycle, abundance trends and environmental pulses will open the way to the study of phytoplankton short-term reactivity to environmental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA