Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(44): e2218778120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37844214

RESUMO

Pierolapithecus catalaunicus (~12 million years ago, northeastern Spain) is key to understanding the mosaic nature of hominid (great ape and human) evolution. Notably, its skeleton indicates that an orthograde (upright) body plan preceded suspensory adaptations in hominid evolution. However, there is ongoing debate about this species, partly because the sole known cranium, preserving a nearly complete face, suffers from taphonomic damage. We 1) carried out a micro computerized tomography (CT) based virtual reconstruction of the Pierolapithecus cranium, 2) assessed its morphological affinities using a series of two-dimensional (2D) and three-dimensional (3D) morphometric analyses, and 3) modeled the evolution of key aspects of ape face form. The reconstruction clarifies many aspects of the facial morphology of Pierolapithecus. Our results indicate that it is most similar to great apes (fossil and extant) in overall face shape and size and is morphologically distinct from other Middle Miocene apes. Crown great apes can be distinguished from other taxa in several facial metrics (e.g., low midfacial prognathism, relatively tall faces) and only some of these features are found in Pierolapithecus, which is most consistent with a stem (basal) hominid position. The inferred morphology at all ancestral nodes within the hominoid (ape and human) tree is closer to great apes than to hylobatids (gibbons and siamangs), which are convergent with other smaller anthropoids. Our analyses support a hominid ancestor that was distinct from all extant and fossil hominids in overall facial shape and shared many features with Pierolapithecus. This reconstructed ancestral morphotype represents a testable hypothesis that can be reevaluated as new fossils are discovered.


Assuntos
Hominidae , Hylobatidae , Animais , Humanos , Evolução Biológica , Hominidae/anatomia & histologia , Crânio/anatomia & histologia , Fósseis , Haplorrinos , Hylobates , Filogenia
2.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495351

RESUMO

Late Miocene great apes are key to reconstructing the ancestral morphotype from which earliest hominins evolved. Despite consensus that the late Miocene dryopith great apes Hispanopithecus laietanus (Spain) and Rudapithecus hungaricus (Hungary) are closely related (Hominidae), ongoing debate on their phylogenetic relationships with extant apes (stem hominids, hominines, or pongines) complicates our understanding of great ape and human evolution. To clarify this question, we rely on the morphology of the inner ear semicircular canals, which has been shown to be phylogenetically informative. Based on microcomputed tomography scans, we describe the vestibular morphology of Hispanopithecus and Rudapithecus, and compare them with extant hominoids using landmark-free deformation-based three-dimensional geometric morphometric analyses. We also provide critical evidence about the evolutionary patterns of the vestibular apparatus in living and fossil hominoids under different phylogenetic assumptions for dryopiths. Our results are consistent with the distinction of Rudapithecus and Hispanopithecus at the genus rank, and further support their allocation to the Hominidae based on their derived semicircular canal volumetric proportions. Compared with extant hominids, the vestibular morphology of Hispanopithecus and Rudapithecus most closely resembles that of African apes, and differs from the derived condition of orangutans. However, the vestibular morphologies reconstructed for the last common ancestors of dryopiths, crown hominines, and crown hominids are very similar, indicating that hominines are plesiomorphic in this regard. Therefore, our results do not conclusively favor a hominine or stem hominid status for the investigated dryopiths.


Assuntos
Hominidae/anatomia & histologia , Hominidae/classificação , Filogenia , Vestíbulo do Labirinto/anatomia & histologia , Animais , Fósseis , Análise de Componente Principal , Fatores de Tempo
3.
Proc Natl Acad Sci U S A ; 117(1): 278-284, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31871170

RESUMO

Oreopithecus bambolii (8.3-6.7 million years old) is the latest known hominoid from Europe, dating to approximately the divergence time of the Pan-hominin lineages. Despite being the most complete nonhominin hominoid in the fossil record, the O. bambolii skeleton IGF 11778 has been, for decades, at the center of intense debate regarding the species' locomotor behavior, phylogenetic position, insular paleoenvironment, and utility as a model for early hominin anatomy. Here we investigate features of the IGF 11778 pelvis and lumbar region based on torso preparations and supplemented by other O. bambolii material. We correct several crucial interpretations relating to the IGF 11778 anterior inferior iliac spine and lumbar vertebrae structure and identifications. We find that features of the early hominin Ardipithecus ramidus torso that are argued to have permitted both lordosis and pelvic stabilization during upright walking are not present in O. bambolii However, O. bambolii also lacks the complete reorganization for torso stiffness seen in extant great apes (i.e., living members of the Hominidae), and is more similar to large hylobatids in certain aspects of torso form. We discuss the major implications of the O. bambolii lower torso anatomy and how O. bambolii informs scenarios of hominoid evolution.


Assuntos
Fósseis , Hominidae/anatomia & histologia , Hominidae/classificação , Filogenia , Tronco/anatomia & histologia , Animais , Evolução Biológica , Hominidae/fisiologia , Humanos , Locomoção/fisiologia , Lordose , Vértebras Lombares/anatomia & histologia , Pelve/anatomia & histologia , Caminhada/fisiologia
4.
J Hum Evol ; 151: 102930, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33422741

RESUMO

Pliopithecoids are an extinct group of catarrhine primates from the Miocene of Eurasia. More than 50 years ago, they were linked to hylobatids due to some morphological similarities, but most subsequent studies have supported a stem catarrhine status, due to the retention of multiple plesiomorphic features (e.g., the ectotympanic morphology) relative to crown catarrhines. More recently, some morphological similarities to hominoids have been noted, raising the question of whether they could be stem members of this clade. To re-evaluate these competing hypotheses, we examine the morphology of the semicircular canals of the bony labyrinth of the middle Miocene pliopithecid Epipliopithecus vindobonensis. The semicircular canals are suitable to test between these hypotheses because (1) they have been shown to embed strong phylogenetic signal and reliably discriminate among major clades; (2) several potential hominoid synapomorphies have been identified previously in the semicircular canals; and (3) semicircular canal morphology has not been previously described for any pliopithecoid. We use a deformation-based (landmark-free) three-dimensional geometric morphometric approach to compare Epipliopithecus with a broad primate sample of extant and extinct anthropoids. We quantify similarities in semicircular canal morphology using multivariate analyses, reconstruct ancestral morphotypes by means of a phylomorphospace approach, and identify catarrhine and hominoid synapomorphies based on discrete characters. Epipliopithecus semicircular canal morphology most closely resembles that of platyrrhines and Aegyptopithecus due to the retention of multiple anthropoid symplesiomorphies. However, Epipliopithecus is most parsimoniously interpreted as a stem catarrhine more derived than Aegyptopithecus due to the possession of a crown catarrhine synapomorphy (i.e., the rounded anterior canal), combined with the lack of other catarrhine and any hominoid synapomorphies. Some similarities with hylobatids and atelids are interpreted as homoplasies likely related to positional behavior. The semicircular canal morphology of Epipliopithecus thus supports the common view that pliopithecoids are stem catarrhines.


Assuntos
Catarrinos/anatomia & histologia , Fósseis/anatomia & histologia , Filogenia , Vestíbulo do Labirinto/anatomia & histologia , Animais
5.
J Hum Evol ; 161: 103073, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34628300

RESUMO

The small-bodied Miocene catarrhine Pliobates cataloniae (11.6 Ma, Spain) displays a mosaic of catarrhine symplesiomorphies and hominoid synapomorphies that hinders deciphering its phylogenetic relationships. Based on cladistic analyses, it has been interpreted as a stem hominoid or as a pliopithecoid. Intriguingly, the carotid canal orientation of Pliobates was originally described as hylobatid-like. The variation in carotid canal morphology among anthropoid clades shown in previous studies suggests that this structure might be phylogenetically informative. However, its potential for phylogenetic reconstruction among extinct catarrhines remains largely unexplored. Here we quantify the orientation, proportions, and course of the carotid canal in Pliobates, extant anthropoids and other Miocene catarrhines (Epipliopithecus, Victoriapithecus, and Ekembo) using three-dimensional morphometric techniques. We also compute phylogenetic signal and reconstruct the ancestral carotid canal course for main anthropoid clades. Our results reveal that carotid canal morphology embeds strong phylogenetic signal but mostly discriminates between platyrrhines and catarrhines, with an extensive overlap among extant catarrhine families. The analyzed extinct taxa display a quite similar carotid canal morphology more closely resembling that of extant catarrhines. Nevertheless, our results for Pliobates highlight some differences compared with the pliopithecid Epipliopithecus, which displays a somewhat more platyrrhine-like morphology. In contrast, Pliobates appears as derived toward the modern catarrhine condition as the stem cercopithecid Victoriapithecus and the stem hominoid Ekembo, which more closely resemble one another. Moreover, Pliobates appears somewhat derived toward the reconstructed ancestral hominoid morphotype, being more similar than other Miocene catarrhines to the condition of great apes and the hylobatid Symphalangus. Overall, our results rule out previously noted similarities in carotid canal morphology between Pliobates and hylobatids, but do not show particular similarities with pliopithecoids either-as opposed to extant and other extinct catarrhines. Additional analyses will be required to clarify the phylogenetic relationships of Pliobates, particularly given its dental similarities with dendropithecids.


Assuntos
Fósseis , Hominidae , Anatomia Comparada , Animais , Evolução Biológica , Haplorrinos , Humanos , Filogenia
6.
J Hum Evol ; 157: 103032, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34233242

RESUMO

Pliopithecoids are a diverse group of Miocene catarrhine primates from Eurasia. Their positional behavior is still unknown, and many species are known exclusively from dentognathic remains. Here, we describe a proximal radius (IPS66267) from the late Miocene of Castell de Barberà (Vallès-Penedès Basin, NE Iberian Peninsula) that represents the first postcranial specimen of the pliopithecoid Barberapithecus huerzeleri. A body mass estimate based on the radius is compared with dental estimates, and its morphology is compared with that of extant and fossil anthropoids by qualitative means as well as by landmark-based three-dimensional geometric morphometrics. The estimated body mass of ∼5 kg for IPS66267 closely matches the dental estimates for the (female) holotype, thereby discounting an alternative attribution to the large-bodied hominoid recorded at Castell de Barberà. In multiple features (oval and moderately tilted head with a pronounced lateral lip and a restricted articular area for the capitulum; proximodistally expanded proximal radioulnar joint; and short, robust, and anteroposteriorly compressed neck), the specimen differs from hominoids and resembles instead extant nonateline monkeys and stem catarrhines. The results of the morphometric analysis further indicate that the Barberapithecus proximal radius shows closer similarities with nonsuspensory arboreal cercopithecoids and the dendropithecid Simiolus. From a locomotor viewpoint, the radius of Barberapithecus lacks most of the features functionally related to climbing and/or suspensory behaviors and displays instead a proximal radioulnar joint that would have been particularly stable under pronation. On the other hand, the Barberapithecus radius differs from other stem catarrhines in the less anteroposteriorly compressed and less tilted radial head with a deeper capitular fovea, suggesting a somewhat enhanced mobility at the elbow joint. We conclude that pronograde arboreal quadrupedalism was the main component of the locomotor repertoire of Barberapithecus but that, similar to other crouzeliids, it might have displayed better climbing abilities than pliopithecids.


Assuntos
Catarrinos/anatomia & histologia , Fósseis , Locomoção , Rádio (Anatomia)/anatomia & histologia , Animais , Feminino , Masculino
7.
J Hum Evol ; 139: 102708, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31972428

RESUMO

We describe the first known navicular bones for an Eocene euprimate from Europe and assess their implications for early patterns of locomotor evolution in primates. Recovered from the fossil site of Sant Jaume de Frontanyà-3C (Barcelona, Spain), the naviculars are attributed to Anchomomys frontanyensis. The small size of A. frontanyensis allows us to consider behavioral implications of comparisons with omomyiforms, regardless of allometric sources of navicular variation. Researchers usually consider omomyiforms to be more prone to leaping than contemporaneous adapiforms partly because of the more pronounced elongation of omomyiform tarsal elements. However, A. frontanyensis differs from other adapiforms and is similar to some omomyiforms in its more elongated navicular proportions. Although this might raise questions about attribution of these naviculars to A. frontanyensis, the elements exhibit clear strepsirrhine affinities leaving little doubt about the attribution: the bones' mesocuneiform facets contact their cuboid facets. We further propose that this strepsirrhine-specific feature in A. frontanyensis and other adapiforms reflects use of more inverted foot postures and potentially smaller substrates than sympatric omomyiforms that lack it. Thus substrate differences may have influenced niche partitioning in Eocene euprimate communities along with differences in locomotor agility. As previous studies on the astragalus and the calcaneus have suggested, this study on the navicular is consistent with the hypothesis that the locomotor mode of A. frontanyensis was similar to that of extant cheirogaleids, especially species of Microcebus and Mirza.


Assuntos
Fósseis/anatomia & histologia , Locomoção , Strepsirhini/anatomia & histologia , Ossos do Tarso/anatomia & histologia , Animais , Evolução Biológica , Espanha , Strepsirhini/fisiologia
8.
J Hum Evol ; 136: 102651, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31542562

RESUMO

Only a few postcranial remains have been assigned to the Miocene great ape Dryopithecus fontani, leading to uncertainties in the reconstruction of its overall body plan and positional behavior. Here we shed light on the locomotor repertoire of this species through the study of the femoral neck cortical bone (FNCB) distribution of IPS41724, a partial proximal femur from the Abocador de Can Mata locality ACM/C3-Az (11.9 Ma, middle Miocene; Vallès-Penedès Basin, Spain) attributed to this taxon. This specimen was scanned through computed tomography to measure the superior (SUP) and inferior (INF) cortical thicknesses at the middle and the base of the femoral neck. Measurements were compared with a sample of extant primates and the femur IPS18800.29 from the younger great ape Hispanopithecus laietanus from Can Llobateres 2 (9.6 Ma, late Miocene; Vallès-Penedès Basin), previously shown to display a homogeneous FNCB distribution at the midneck section coupled with postcranial adaptations to below-branch suspensory behaviors. Our analyses indicate an asymmetric FNCB distribution for IPS41724 (SUP/INF index = âˆ¼0.4 at the midneck and base of the neck sections), comparable with that of quadrupedal primates and bipedal hominins (including early australopiths), but contrasting with the homogeneous FNCB distribution of Hispanopithecus and extant great apes. An asymmetrical FNCB distribution has been associated with stereotyped loads at the hip joint (as in both quadrupedal and bipedal taxa). Our results therefore support a significant quadrupedal component of the positional behavior of Dryopithecus, thus strengthening the argument that plesiomorphic generalized quadrupedalism was still a major locomotor behavior for Miocene great apes. If that were the case, it could have deep implications for the origins of hominin bipedalism.


Assuntos
Evolução Biológica , Osso Cortical/anatomia & histologia , Colo do Fêmur/anatomia & histologia , Fósseis/anatomia & histologia , Hominidae , Locomoção , Animais , Hominidae/anatomia & histologia , Hominidae/fisiologia , Espanha
9.
J Hum Evol ; 132: 32-46, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203850

RESUMO

Castell de Barberà, located in the Vallès-Penedès Basin (NE Iberian Peninsula), is one of the few European sites where pliopithecoids (Barberapithecus) and hominoids (cf. Dryopithecus) co-occur. The dating of this Miocene site has proven controversial. A latest Aragonian (MN7+8, ca. 11.88-11.18 Ma) age was long accepted by most authors, despite subsequent reports of hipparionin remains that signaled a Vallesian age. On the latter basis, Castell de Barberà was recently correlated to the early Vallesian (MN9, ca. 11.18-10.3 Ma) on tentative grounds. Uncertainties about the provenance of the Hippotherium material and the lack of magnetostratigraphic data precluded more accurate dating. After decades of inactivity, fieldwork was resumed in 2014-2015 at Castell de Barberà, including the original layer (CB-D) that previously delivered most of the fossils. Here we report magnetostratigraphic results for the original outcrop and another nearby section. Our results indicate that CB-D is located in a normal polarity magnetozone in the middle of a short (∼20 m-thick) stratigraphic section. The composite magnetostratigraphic section (∼50 m) has as many as four to six magnetozones. These multiple reversals, coupled with the in situ recovery of a Hippotherium humerus from CB-D in 2015, make it unlikely that any of the sampled normal polarity magnetozones correlate with the long normal polarity subchron C5n.2n (11.056-9.984 Ma), which is characteristic of the early Vallesian. Our results support instead a correlation of CB-D with C5r.1n (11.188-11.146 Ma), where the Aragonian/Vallesian boundary is situated, and therefore indicate an earliest Vallesian age of ∼11.2 Ma for Castell de Barberà. Our results settle the longstanding debate about the Aragonian vs. Vallesian age of this site, which appears roughly coeval with the Creu de Conill 20 locality (11.18 Ma), where hipparionins are first recorded in the Vallès-Penedès Basin.


Assuntos
Evolução Biológica , Fósseis , Sedimentos Geológicos/análise , Primatas , Animais , Espanha
11.
J Hum Evol ; 121: 254-259, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29886005

RESUMO

The scarce primate remains from the late Eocene locality of Roc de Santa (Central Pyrenees, NE Spain) were first documented in 1975. This material included a mandibular fragment with P3-M2 and a maxillary fragment with P3-M3 assigned to Adapis magnus (later transferred to the genus Leptadapis), and an isolated M3 attributed to Necrolemur antiquus. However, these specimens were never described in detail. We have thoroughly studied these specimens, with the exception of the mandibular fragment, which has been lost. The maxillary fragment is much smaller than in Leptadapis magnus and shows clear morphological differences from that species; this specimen is assigned to Microchoerus hookeri. Similarly, the isolated M3 resembles that of M. hookeri in size and morphology, and can therefore be attributed to this taxon. In addition, we describe an upper incisor never reported previously, which can also be allocated to M. hookeri, representing the first description of this tooth for the species. Therefore, we conclude that the previous taxonomic determinations were mistaken and all the available primate specimens from Roc de Santa can be confidently assigned to the species M. hookeri, previously described from the same-age localities of Sossís, Spain, and Eclépens-B, Switzerland.


Assuntos
Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Primatas/classificação , Animais , Dente Pré-Molar/anatomia & histologia , Incisivo/anatomia & histologia , Mandíbula/anatomia & histologia , Maxila/anatomia & histologia , Dente Molar/anatomia & histologia , Paleodontologia , Filogenia , Espanha
12.
J Hum Evol ; 121: 193-203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29786505

RESUMO

In the Iberian Peninsula, Miocene apes (Hominoidea) are generally rare and mostly restricted to the Vallès-Penedès Basin. Here we report a new hominoid maxillary fragment with M2 from this basin. It was surface-collected in March 2017 from the site of Can Pallars i Llobateres (CPL, Sant Quirze del Vallès), where fossil apes had not been previously recorded. The locality of provenance (CPL-M), which has delivered no further fossil remains, is located very close (ca. 50 m) to previously known CPL outcrops, and not very far (ca. 500 m in NW direction) from the classical hominoid-bearing locality of Can Poncic 1. Here we describe the new fossil and, based on the size and proportions of the M2, justify its taxonomic attribution to Hispanopithecus cf. laietanus, a species previously recorded from several Vallesian sites of the Vallès-Penedès Basin. Based on the associated mammalian fauna from CPL, we also provide a biochronological dating and a paleoenvironmental reconstruction for the site. The associated fauna enables an unambiguous correlation to the Cricetulodon hartenbergeri - Progonomys hispanicus interval local subzone, with an estimated age of 9.98-9.73 Ma (late Vallesian, MN10). Therefore, CPL-M is roughly coeval with the Hispanopithecus laietanus-bearing localities of Can Llobateres 1 and Can Feu 1, and minimally older than those of La Tarumba 1 and Can Llobateres 2. In contrast, CPL-M is younger than the early Vallesian (MN9) localities of Can Poncic 1 (the type locality of Hispanopithecus crusafonti) as well as Polinyà 2 (Gabarró) and Estació Depuradora d'Aigües Residuals-Riu Ripoll 13, where Hispanopithecus sp. is recorded. The associated fauna from CPL indicates a densely forested and humid paleoenvironment with nearby freshwater. This supports the view that Hispanopithecus might have been restricted to dense wetland forests soon before its extinction during the late Vallesian, due to progressive climatic deterioration. Coupled with the existence of other fossiliferous outcrops in the area, this find is most promising for the prospect of discovering additional fossil hominoid remains in the future.


Assuntos
Fósseis/anatomia & histologia , Hominidae/anatomia & histologia , Maxila/anatomia & histologia , Animais , Evolução Biológica , Meio Ambiente , Hominidae/classificação , Espanha
13.
Am J Phys Anthropol ; 166(4): 987-993, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29577230

RESUMO

OBJECTIVES: High-resolution imaging of fossils with X-ray computed microtomography (µCT) has become a very powerful tool in paleontological research. However, fossilized bone, embedding matrix, and dental tissues do not always provide a distinct structural signal with X-rays. We demonstrate the benefits of high-resolution neutron radiation in three different specimens showing problematic contrasts with X-ray µCT. MATERIALS AND METHODS: We compare neutron with X-ray µCT scans of fossils from two Miocene catarrhines from the Vallès-Penedès Basin: the cranium (IPS58443.1, holotype) of the putative stem hominoid Pliobates cataloniae, to discriminate between bone and matrix; and two lower molars (IPS1724n,o, holotype) of Barberapithecus huerzeleri, to discriminate among dental tissues. RESULTS: X-ray µCT scans of these specimens fail to retrieve any contrast between matrix/bone and enamel/dentine, whereas neutron µCT scans deliver high-contrast images, enabling a proper evaluation of the specimens' internal anatomy. DISCUSSION: Low bone/matrix intensity difference with X-ray µCT scans in IPS58443.1 is due to the extreme similarity in chemical composition between the matrix and the fossilized tissues, and the presence of high-density elements. In IPS1724, it is attributable to the convergence of enamel and dentine compositions during fossilization. On the contrary, neutron radiation returns very different contrasts for different isotopes of the same element and easily penetrates most metals. Neutron-based µCT scans therefore enable a correct definition of the bone/sediment and enamel/dentine interfaces, and hence a better segmentation of the images stack. We conclude that neutron radiation represents a successful alternative for high-resolution µCT of small-sized fossils that are problematic with X-rays.


Assuntos
Catarrinos/anatomia & histologia , Fósseis , Nêutrons , Microtomografia por Raio-X/métodos , Animais , Antropologia Física , Osso e Ossos/diagnóstico por imagem , Dente Molar/diagnóstico por imagem , Espanha
14.
J Hum Evol ; 113: 127-136, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29054163

RESUMO

New material attributed to Agerinia smithorum from Casa Retjo-1 (early Eocene, NE Iberian Peninsula), consisting of 13 isolated teeth and a fragment of calcaneus, is studied in this work. These fossils allow the first description of the calcaneus and the upper premolars for the genus Agerinia, as well as the first description of the P2 and M2 for A. smithorum. The newly recovered lower teeth are virtually identical to the holotype of A. smithorum and are clearly distinguishable from the other species of Agerinia. The upper teeth also show clear differences with Agerinia marandati. The morphology of the calcaneal remains reveals that A. smithorum practiced a moderately active arboreal quadrupedal mode of locomotion, showing less leaping proclivity than notharctines but more than asiadapids. All the morphological features observed in the described material reinforce the hypothesis of a single lineage consisting of the species A. smithorum, A. marandati, and Agerinia roselli. Furthermore, the phylogenetic analysis developed in this work, which incorporates the newly described remains of A. smithorum, maintains the position of Agerinia as closely related to sivaladapids and asiadapids.


Assuntos
Fósseis/anatomia & histologia , Mandíbula/anatomia & histologia , Paleodontologia , Dente/anatomia & histologia , Animais , Filogenia , Primatas , Espanha
15.
J Hum Evol ; 102: 42-66, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28012463

RESUMO

The study of Eocene primates is crucial for understanding the evolutionary steps undergone by the earliest members of our lineage and the relationships between extinct and extant taxa. Recently, the description of new material from Spain has improved knowledge of European Paleogene primates considerably, particularly regarding microchoerines. Here we describe the remains of Microchoerus from Sossís (late Eocene, Northern Spain), consisting of more than 120 specimens and representing the richest sample of Microchoerus from Spain. This primate was first documented in Sossís during the 1960s, on the basis of scarce specimens that were ascribed to Microchoerus erinaceus. However, the studied material clearly differs from M. erinaceus at its type locality, Hordle Cliff, and shows some characters that allow the erection of a new species, Microchoerus hookeri. This new species is characterized by its medium size, moderate enamel wrinkling, generally absent mesoconid and small hypoconulid in the M1 and M2, single paracone in the upper molars and premolars and, particularly, by the lack of mesostyle in most M1 and M2, a trait not observed in any other species of Microchoerus. Some specimens from Eclépens B (late Eocene, Switzerland), determined previously to be Microcherus aff. erinaceus, are also ascribed to M. hookeri. M. hookeri represents the first step of a lineage that differentiated from Necrolemur antiquus and, later, gave rise to several unnamed forms of Microchoerus, such as those from Euzet and Perrière, finally leading to M. erinaceus. This discovery sheds new light on the complex evolutionary scheme of Microchoerus, indicating that it is most probably a paraphyletic group. A detailed revision of the age of the localities containing remains of Microchoerus and the description of the still unpublished material from some European localities, are necessary to clarify the phylogenetic relationships among the members of this microchoerine group.


Assuntos
Dente Pré-Molar/anatomia & histologia , Fósseis/anatomia & histologia , Mandíbula/anatomia & histologia , Dente Molar/anatomia & histologia , Paleodontologia/métodos , Primatas/classificação , Animais , Evolução Biológica , Filogenia , Espanha
16.
Am J Phys Anthropol ; 164(4): 788-800, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28949001

RESUMO

OBJECTIVES: The locomotor and manipulative abilities of australopithecines are highly debated in the paleoanthropological context. Australopithecus afarensis and Australopithecus sediba likely engaged in arboreal locomotion and, especially the latter, in certain activities implying manipulation. Nevertheless, their degree of arboreality and the relevance of their manipulative skills remain unclear. Here we calculate the pronation efficiency of the forearm (Erot ) in these taxa to explore their arboreal and manipulative capabilities using a biomechanical approach. MATERIALS AND METHODS: Three-dimensional humeral images and upper limb measurements of A.L. 288-1 (Au. afarensis) and MH2 (Au. sediba) were used to calculate Erot using a previously described biomechanical model. RESULTS: Maximal Erot in elbow flexion occurs in a rather supinated position of the forearm in Au. afarensis, similarly to Pan troglodytes. In elbow extension, maximal Erot in this fossil taxon occurs in the same forearm position as in Pongo spp. In Au. sediba the forearm positions where Erot is maximal are largely coincident with those for Hylobatidae. CONCLUSIONS: The pattern in Au. afarensis suggests relevant arboreal capabilities, which would include vertical climbing, although it is suggestive of poorer manipulative skills than in modern humans. The similarity between Au. sediba and Hylobatidae is difficult to interpret, but the differences between Au. sediba and Au. afarensis suggest that the capacity to rotate the forearm followed different evolutionary processes in these australopithecine species. Although functional inferences from the upper limb are complex, the observed differences between both taxa point to the existence of two distinct anatomical models.


Assuntos
Ossos do Braço , Antebraço , Hominidae , Locomoção/fisiologia , Pronação/fisiologia , Animais , Antropologia Física , Ossos do Braço/anatomia & histologia , Ossos do Braço/fisiologia , Evolução Biológica , Fenômenos Biomecânicos , Ecossistema , Feminino , Antebraço/anatomia & histologia , Antebraço/fisiologia , Fósseis , Hominidae/anatomia & histologia , Hominidae/fisiologia , Masculino , Árvores
17.
J Hum Evol ; 91: 122-43, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26852816

RESUMO

Astragali and calcanei of Anchomomys frontanyensis, a small adapiform from the middle Eocene of Sant Jaume de Frontanyà (Southern Pyrenean basins, northeastern Spain) are described in detail. Though these bones have been known for some time, they have never been carefully analyzed in a context that is comprehensively comparative, quantitative, considers sample variation (astragalus n = 4; calcaneus n = 16), and assesses the phylogenetic significance of the material in an explicit cladistic context, as we do here. Though these bones are isolated, regression analyses provide the first formal statistical support for attribution to A. frontanyensis. The astragalus presents features similar to those of the small stem strepsirrhine Djebelemur from the middle Eocene of Tunisia, while the calcaneus more closely resembles those of the basal omomyiform Teilhardina. The new phylogenetic analyses that include Anchomomys' postcranial and dental data recover anchomomyins outside of the adapiform clade, and closer to djebelemurids, azibiids, and crown strepsirrhines. The small size of A. frontanyensis allows comparison of similarly small adapiforms and omomyiforms (haplorhines) such that observed variation has more straightforward implications for function. Previous studies have demonstrated that distal calcaneal elongation is reflective of leaping proclivity when effects of body mass are appropriately accounted for; in this context, A. frontanyensis has calcaneal elongation suggesting a higher degree of leaping specialization than other adapiforms and even some early omomyiforms. Moreover, comparison to a similarly-sized early adapiform from India, Marcgodinotius (which shows no calcaneal elongation) confirms that high distal calcaneal elongation in A. frontanyensis cannot be simply explained by allometric effects of small size compared to larger adapiform taxa. This pattern is consistent with the idea that significant distal calcaneal elongation evolved at least twice in early euprimates, and that early primate niche space frequently included demands for increased leaping specialization.


Assuntos
Evolução Biológica , Calcâneo/anatomia & histologia , Fósseis/anatomia & histologia , Primatas/anatomia & histologia , Tálus/anatomia & histologia , Animais , Espanha
18.
Am J Phys Anthropol ; 160(1): 162-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26779780

RESUMO

OBJECTIVES: The presence of Microchoerus in Sant Cugat de Gavadons (Late Eocene, Ebro Basin, Northeastern Spain) was first noted by M. Crusafont, who described a fragment of maxilla with two teeth that he interpreted as P(4) and M(1) and referred this specimen to the species Microchoerus ornatus. The objective of this work is to study in detail this fossil and check if the previous taxonomic determination was correct. METHODS: We reexamine the single specimen from Sant Cugat de Gavadons, providing for the first time detailed descriptions, measurements and illustrations. We also compare this fossil with the holotype of Microchoerus ornatus from Mormont Entreroches (Switzerland) and with the type material of all other described species of Microchoerus. RESULTS: Although the scarcity of material from Sant Cugat de Gavadons and the strong wear of the two available teeth (which in fact correspond to P(3) and P(4)) do not allow a determination at the specific level, it is clear that this form presents notable differences with the type of M. ornatus and must not be referred to this species. DISCUSSION: Neither the anatomical identification of the two teeth of this maxillary fragment, nor the specific determination of the specimen from Sant Cugat de Gavadons was correct. The ascription of this fossil to Microchoerus ornatus, which represented the only mention of the species in the Iberian Peninsula, is no longer valid. Therefore, the known geographical range of M. ornatus remains restricted to Switzerland.


Assuntos
Fósseis , Primatas/anatomia & histologia , Dente/anatomia & histologia , Animais , História Antiga , Maxila/anatomia & histologia , Paleodontologia
19.
Am J Phys Anthropol ; 161(1): 116-24, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27306700

RESUMO

The new species Agerinia smithorum (Adapiformes, Primates) from the early Eocene of the Iberian Peninsula is erected in this work. An emended diagnosis of the genus is provided, together with a broad description of the new species and comparisons with other samples assigned to Agerinia and other similar medium-sized cercamoniines. The new species is based on the most complete specimen of this genus published to date, a mandible preserving the alveoli of the canine and P1 , the roots of the P2 and all teeth from P3 to M3 . It was found in Casa Retjo-1, a new early Eocene locality from Northeastern Spain. The studied specimen is clearly distinguishable from other cercamoniines such as Periconodon, Darwinius, and Donrussellia, but very similar to Agerinia roselli, especially in the similar height of P3 and P4 and the general morphology of the molars, therefore allowing the allocation to the same genus. However, it is undoubtedly distinct from A. roselli, having a less molarized P4 and showing a larger paraconid in the M1 and a tiny one in the M2 , among other differences. The body mass of A. smithorum has also been estimated, ranging from 652 to 724 g, similar to that of A. roselli. The primitive traits shown by A. smithorum (moderately molarized P4 , large paraconid in the M1 and small but distinct in the M2 ) suggest that it could be the ancestor of A. roselli.


Assuntos
Primatas/anatomia & histologia , Primatas/classificação , Animais , Antropologia Física , Tamanho Corporal , Fósseis , Mandíbula/anatomia & histologia , Espanha , Dente/anatomia & histologia
20.
J Hum Evol ; 83: 74-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25959342

RESUMO

The species Pseudoloris parvulus, identified in several Middle and Late Eocene European sites, was previously known in the Iberian Peninsula by a single mandible preserving P4-M3 from Sossís (Southern Pyrenean Basins, northeastern Spain), described in the 1960s. Further field work at this Late Eocene site has led to the recovery of a large number of mammal remains, including the additional material of P. parvulus described in this paper. Some specimens of P. parvulus from this locality have also been recently found in the collections of the Naturhistorisches Museum Basel, Switzerland. The whole sample consists of 11 mandible fragments including several teeth, three upper dental series and nearly 80 isolated teeth including all of the dental elements, and represents the most complete sample of the genus described from the Iberian Peninsula. This abundant material allows us to provide an emended diagnosis for the species and to observe several directional changes in the dental morphology of the lineage including the species Pseudoloris saalae, Pseudoloris isabenae, Pseudoloris pyrenaicus and P. parvulus. These directional changes include the progressive reduction of the paraconid in the lower molars and the increase in size of the hypocone, metaconule and paraconule in the upper molars. Moreover, despite the overall resemblance among all of the samples ascribed to P. parvulus, we also recognize some differences, particularly an increase in size and better development of the hypocone from the oldest populations of the species, such as Le Bretou, to the most recent ones, like Sossís and Perrière. Therefore, this study sheds new light on the evolution of this genus, which inhabited Europe from the Middle Eocene to the Early Oligocene.


Assuntos
Evolução Biológica , Paleontologia , Primatas/anatomia & histologia , Dente/anatomia & histologia , Animais , Fósseis , Mandíbula/anatomia & histologia , Dente Molar/anatomia & histologia , Paleodontologia , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA