Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046022

RESUMO

Nitrate is a nutrient and a potent signal that impacts global gene expression in plants. However, the regulatory factors controlling temporal and cell type-specific nitrate responses remain largely unknown. We assayed nitrate-responsive transcriptome changes in five major root cell types of the Arabidopsis thaliana root as a function of time. We found that gene-expression response to nitrate is dynamic and highly localized and predicted cell type-specific transcription factor (TF)-target interactions. Among cell types, the endodermis stands out as having the largest and most connected nitrate-regulatory gene network. ABF2 and ABF3 are major hubs for transcriptional responses in the endodermis cell layer. We experimentally validated TF-target interactions for ABF2 and ABF3 by chromatin immunoprecipitation followed by sequencing and a cell-based system to detect TF regulation genome-wide. Validated targets of ABF2 and ABF3 account for more than 50% of the nitrate-responsive transcriptome in the endodermis. Moreover, ABF2 and ABF3 are involved in nitrate-induced lateral root growth. Our approach offers an unprecedented spatiotemporal resolution of the root response to nitrate and identifies important components of cell-specific gene regulatory networks.


Assuntos
Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Nitratos/metabolismo , Fenômenos Fisiológicos Vegetais , Fatores de Transcrição/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Biologia Computacional/métodos , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Modelos Biológicos , Especificidade de Órgãos/genética , Raízes de Plantas/fisiologia , Fatores de Transcrição/metabolismo , Transcriptoma
2.
Yeast ; 41(1-2): 52-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38146767

RESUMO

In this study, we describe Nakazawaea atacamensis f. a., sp. nov., a novel species obtained from Neltuma chilensis plant samples in Chile's hyperarid Atacama Desert. In total, three strains of N. atacamensis were obtained from independent N. chilensis samples (synonym Prosopis chilensis, Algarrobo). Two strains were obtained from bark samples, while the third strain was obtained from bark-exuded gum from another tree. The novel species was defined using molecular characteristics and subsequently characterized with respect to morphological, physiological, and biochemical properties. A neighbor-joining analysis using the sequences of the D1/D2 domains of the large subunit ribosomal RNA gene revealed that N. atacamensis clustered with Nakazawaea pomicola. The sequence of N. atacamensis differed from closely related species by 1.3%-5.2% in the D1/D2 domains. A phylogenomic analysis based on single-nucleotide polymorphism's data confirms that the novel species belongs to the genus Nakazawaea, where N. atacamensis clustered with N. peltata. Phenotypic comparisons demonstrated that N. atacamensis exhibited distinct carbon assimilation patterns compared to its related species. Genome sequencing of the strain ATA-11A-BT revealed a genome size of approximately 12.4 Mbp, similar to other Nakazawaea species, with 5116 protein-coding genes annotated using InterProScan. In addition, N. atacamensis exhibited the capacity to ferment synthetic wine must, representing a potential new yeast for mono or co-culture wine fermentations. This comprehensive study expands our understanding of the genus Nakazawaea and highlights the ecological and industrial potential of N. atacamensis in fermentation processes. The holotype of N. atacamensis sp. nov. is CBS 18375T . The Mycobank number is MB 849680.


Assuntos
Saccharomycetales , Vinho , Fermentação , Filogenia , Saccharomycetales/genética , Pichia/genética , Sequência de Bases , Análise de Sequência de DNA , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética
3.
Plant Cell Environ ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950037

RESUMO

Nitrate is a nutrient and signal that regulates gene expression. The nitrate response has been extensively characterized at the organism, organ, and cell-type-specific levels, but intracellular mRNA dynamics remain unexplored. To characterize nuclear and cytoplasmic transcriptome dynamics in response to nitrate, we performed a time-course expression analysis after nitrate treatment in isolated nuclei, cytoplasm, and whole roots. We identified 402 differentially localized transcripts (DLTs) in response to nitrate treatment. Induced DLT genes showed rapid and transient recruitment of the RNA polymerase II, together with an increase in the mRNA turnover rates. DLTs code for genes involved in metabolic processes, localization, and response to stimulus indicating DLTs include genes with relevant functions for the nitrate response that have not been previously identified. Using single-molecule RNA FISH, we observed early nuclear accumulation of the NITRATE REDUCTASE 1 (NIA1) transcripts in their transcription sites. We found that transcription of NIA1, a gene showing delayed cytoplasmic accumulation, is rapidly and transiently activated; however, its transcripts become unstable when they reach the cytoplasm. Our study reveals the dynamic localization of mRNAs between the nucleus and cytoplasm as an emerging feature in the temporal control of gene expression in response to nitrate treatment in Arabidopsis roots.

4.
J Exp Bot ; 75(11): 3596-3611, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38477678

RESUMO

The best ideotypes are under mounting pressure due to increased aridity. Understanding the conserved molecular mechanisms that evolve in wild plants adapted to harsh environments is crucial in developing new strategies for agriculture. Yet our knowledge of such mechanisms in wild species is scant. We performed metabolic pathway reconstruction using transcriptome information from 32 Atacama and phylogenetically related species that do not live in Atacama (sister species). We analyzed reaction enrichment to understand the commonalities and differences of Atacama plants. To gain insights into the mechanisms that ensure survival, we compared expressed gene isoform numbers and gene expression patterns between the annotated biochemical reactions from 32 Atacama and sister species. We found biochemical convergences characterized by reactions enriched in at least 50% of the Atacama species, pointing to potential advantages against drought and nitrogen starvation, for instance. These findings suggest that the adaptation in the Atacama Desert may result in part from shared genetic legacies governing the expression of key metabolic pathways to face harsh conditions. Enriched reactions corresponded to ubiquitous compounds common to extreme and agronomic species and were congruent with our previous metabolomic analyses. Convergent adaptive traits offer promising candidates for improving abiotic stress resilience in crop species.


Assuntos
Clima Desértico , Filogenia , Transcriptoma , Chile , Adaptação Fisiológica , Redes e Vias Metabólicas
5.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34725254

RESUMO

The Atacama Desert in Chile-hyperarid and with high-ultraviolet irradiance levels-is one of the harshest environments on Earth. Yet, dozens of species grow there, including Atacama-endemic plants. Herein, we establish the Talabre-Lejía transect (TLT) in the Atacama as an unparalleled natural laboratory to study plant adaptation to extreme environmental conditions. We characterized climate, soil, plant, and soil-microbe diversity at 22 sites (every 100 m of altitude) along the TLT over a 10-y period. We quantified drought, nutrient deficiencies, large diurnal temperature oscillations, and pH gradients that define three distinct vegetational belts along the altitudinal cline. We deep-sequenced transcriptomes of 32 dominant plant species spanning the major plant clades, and assessed soil microbes by metabarcoding sequencing. The top-expressed genes in the 32 Atacama species are enriched in stress responses, metabolism, and energy production. Moreover, their root-associated soils are enriched in growth-promoting bacteria, including nitrogen fixers. To identify genes associated with plant adaptation to harsh environments, we compared 32 Atacama species with the 32 closest sequenced species, comprising 70 taxa and 1,686,950 proteins. To perform phylogenomic reconstruction, we concatenated 15,972 ortholog groups into a supermatrix of 8,599,764 amino acids. Using two codon-based methods, we identified 265 candidate positively selected genes (PSGs) in the Atacama plants, 64% of which are located in Pfam domains, supporting their functional relevance. For 59/184 PSGs with an Arabidopsis ortholog, we uncovered functional evidence linking them to plant resilience. As some Atacama plants are closely related to staple crops, these candidate PSGs are a "genetic goldmine" to engineer crop resilience to face climate change.


Assuntos
Plantas/genética , Altitude , Chile , Mudança Climática , Clima Desértico , Ecossistema , Genômica/métodos , Filogenia , Solo , Microbiologia do Solo
6.
J Exp Bot ; 74(14): 4244-4258, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37185665

RESUMO

In Arabidopsis thaliana, root high-affinity nitrate (NO3-) uptake depends mainly on NRT2.1, 2.4, and 2.5, which are repressed by high NO3- supply at the transcript level. For NRT2.1, this regulation is due to the action of (i) feedback down-regulation by N metabolites and (ii) repression by NO3- itself mediated by the transceptor NRT1.1(NPF6.3). However, for NRT2.4 and NRT2.5, the signalling pathway(s) remain unknown as do the molecular elements involved. Here we show that unlike NRT2.1, NRT2.4 and NRT2.5 are not induced in an NO3- reductase mutant but are up-regulated following replacement of NO3- by ammonium (NH4+) as the N source. Moreover, increasing the NO3- concentration in a mixed nutrient solution with constant NH4+ concentration results in a gradual repression of NRT2.4 and NRT2.5, which is suppressed in an nrt1.1 mutant. This indicates that NRT2.4 and NRT2.5 are subjected to repression by NRT1.1-mediated NO3- sensing, and not to feedback repression by reduced N metabolites. We further show that key regulators of NRT2 transporters, such as HHO1, HRS1, PP2C, LBD39, BT1, and BT2, are also regulated by NRT1.1-mediated NO3- sensing, and that several of them are involved in NO3- repression of NRT2.1, NRT2.4, and NRT2.5. Finally, we provide evidence that it is the phosphorylated form of NRT1.1 at the T101 residue, which is most active in triggering the NRT1.1-mediated NO3- regulation of all these genes. Altogether, these data led us to propose a regulatory model for high-affinity NO3- uptake in Arabidopsis, highlighting several NO3- transduction cascades downstream of the phosphorylated form of the NRT1.1 transceptor.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
7.
Plant Physiol ; 186(1): 696-714, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33582801

RESUMO

In Arabidopsis (Arabidopsis thaliana), the High-Affinity Transport System (HATS) for root nitrate (NO3-) uptake depends mainly on four NRT2 NO3- transporters, namely NRT2.1, NRT2.2, NRT2.4, and NRT2.5. The HATS is the target of many regulations to coordinate nitrogen (N) acquisition with the N status of the plant and with carbon (C) assimilation through photosynthesis. At the molecular level, C and N signaling pathways control gene expression of the NRT2 transporters. Although several regulators of these transporters have been identified in response to either N or C signals, the response of NRT2 gene expression to the interaction of these signals has never been specifically investigated, and the underlying molecular mechanisms remain largely unknown. To address this question we used an original systems biology approach to model a regulatory gene network targeting NRT2.1, NRT2.2, NRT2.4, and NRT2.5 in response to N/C signals. Our systems analysis of the data identified three transcription factors, TGA3, MYC1, and bHLH093. Functional analysis of mutants combined with yeast one-hybrid experiments confirmed that all three transcription factors are regulators of NRT2.4 or NRT2.5 in response to N or C signals. These results reveal a role for TGA3, MYC1, and bHLH093 in controlling the expression of root NRT2 transporter genes.


Assuntos
Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Carbono/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla
8.
J Exp Bot ; 72(5): 1891-1905, 2021 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-33188435

RESUMO

Plants possess a robust metabolic network for sensing and controlling reactive oxygen species (ROS) levels upon stress conditions. Evidence shown here supports a role for TGA class II transcription factors as critical regulators of genes controlling ROS levels in the tolerance response to UV-B stress in Arabidopsis. First, tga256 mutant plants showed reduced capacity to scavenge H2O2 and restrict oxidative damage in response to UV-B, and also to methylviologen-induced photooxidative stress. The TGA2 transgene (tga256/TGA2 plants) complemented these phenotypes. Second, RNAseq followed by clustering and Gene Ontology term analyses indicate that TGA2/5/6 positively control the UV-B-induced expression of a group of genes with oxidoreductase, glutathione transferase, and glucosyltransferase activities, such as members of the glutathione S-transferase Tau subfamily (GSTU), which encodes peroxide-scavenging enzymes. Accordingly, increased glutathione peroxidase activity triggered by UV-B was impaired in tga256 mutants. Third, the function of TGA2/5/6 as transcriptional activators of GSTU genes in the UV-B response was confirmed for GSTU7, GSTU8, and GSTU25, using quantitative reverse transcription-PCR and ChIP analyses. Fourth, expression of the GSTU7 transgene complemented the UV-B-susceptible phenotype of tga256 mutant plants. Together, this evidence indicates that TGA2/5/6 factors are key regulators of the antioxidant/detoxifying response to an abiotic stress such as UV-B light overexposure.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estresse Oxidativo , Fatores de Transcrição , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
New Phytol ; 222(1): 628-640, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30521109

RESUMO

High-efficiency methods for DNA assembly have enabled the routine assembly of synthetic DNAs of increased size and complexity. However, these techniques require customization, elaborate vector sets or serial manipulations for the different stages of assembly. We have developed Loop assembly based on a recursive approach to DNA fabrication. The system makes use of two Type IIS restriction endonucleases and corresponding vector sets for efficient and parallel assembly of large DNA circuits. Standardized level 0 parts can be assembled into circuits containing 1, 4, 16 or more genes by looping between the two vector sets. The vectors also contain modular sites for hybrid assembly using sequence overlap methods. Loop assembly enables efficient and versatile DNA fabrication for plant transformation. We show the construction of plasmids up to 16 genes and 38 kb with high efficiency (> 80%). We have characterized Loop assembly on over 200 different DNA constructs and validated the fidelity of the method by high-throughput Illumina plasmid sequencing. Our method provides a simple generalized solution for DNA construction with standardized parts. The cloning system is provided under an OpenMTA license for unrestricted sharing and open access.


Assuntos
DNA de Plantas/genética , Vetores Genéticos/genética , Automação , Marchantia/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
10.
J Exp Bot ; 67(10): 3095-108, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27117340

RESUMO

Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes.


Assuntos
Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/genética , Genes de Plantas/fisiologia , Glutamato-Amônia Ligase/metabolismo , Lotus/genética , Lotus/metabolismo , Lotus/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real
11.
Proc Natl Acad Sci U S A ; 110(31): 12840-5, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23847199

RESUMO

Auxin is a key phytohormone regulating central processes in plants. Although the mechanism by which auxin triggers changes in gene expression is well understood, little is known about the specific role of the individual members of the TIR1/AFB auxin receptors, Aux/IAA repressors, and ARF transcription factors and/or molecular pathways acting downstream leading to plant responses to the environment. We previously reported a role for AFB3 in coordinating primary and lateral root growth to nitrate availability. In this work, we used an integrated genomics, bioinformatics, and molecular genetics approach to dissect regulatory networks acting downstream of AFB3 that are activated by nitrate in roots. We found that the NAC4 transcription factor is a key regulatory element controlling a nitrate-responsive network, and that nac4 mutants have altered lateral root growth but normal primary root growth in response to nitrate. This finding suggests that AFB3 is able to activate two independent pathways to control root system architecture. Our systems approach has unraveled key components of the AFB3 regulatory network leading to changes in lateral root growth in response to nitrate.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Receptores de Superfície Celular/genética , Fatores de Transcrição/genética
12.
J Exp Bot ; 65(19): 5611-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25129132

RESUMO

Nitrogen (N) is an essential macronutrient and a key structural component of macromolecules in plants. N nutrients and metabolites can act as signals that impact on many aspects of plant biology. The plant life cycle involves a series of developmental phase transitions that must be tightly coordinated to external and internal cues in order to ensure plant survival and reproduction. N availability is one of the factors controlling phase changes. In this review, we integrate and summarize the known effects of N over different developmental stages in plants. Substantial advances have been made in our understanding of signalling and N-responsive gene regulatory networks. We focus on the molecular mechanisms underlying N regulation of developmental transitions and the role of putative new regulators that might link N availability to pathways controlling Arabidopsis growth and development from seed germination through the plant reproductive transition.


Assuntos
Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Nitrogênio/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Redes Reguladoras de Genes , Germinação , Estágios do Ciclo de Vida , Transição de Fase , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
13.
BMC Genomics ; 14: 701, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24119003

RESUMO

BACKGROUND: Nitrate and other nitrogen metabolites can act as signals that regulate global gene expression in plants. Adaptive changes in plant morphology and physiology triggered by changes in nitrate availability are partly explained by these changes in gene expression. Despite several genome-wide efforts to identify nitrate-regulated genes, no comprehensive study of the Arabidopsis root transcriptome under contrasting nitrate conditions has been carried out. RESULTS: In this work, we employed the Illumina high throughput sequencing technology to perform an integrated analysis of the poly-A + enriched and the small RNA fractions of the Arabidopsis thaliana root transcriptome in response to nitrate treatments. Our sequencing strategy identified new nitrate-regulated genes including 40 genes not represented in the ATH1 Affymetrix GeneChip, a novel nitrate-responsive antisense transcript and a new nitrate responsive miRNA/TARGET module consisting of a novel microRNA, miR5640 and its target, AtPPC3. CONCLUSIONS: Sequencing of small RNAs and mRNAs uncovered new genes, and enabled us to develop new hypotheses for nitrate regulation and coordination of carbon and nitrogen metabolism.


Assuntos
Arabidopsis/genética , Genes de Plantas/genética , Nitratos/farmacologia , RNA de Plantas/metabolismo , Análise de Sequência de RNA/métodos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Biblioteca Gênica , Variação Genética/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Poli A/metabolismo , RNA de Plantas/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
14.
J Fungi (Basel) ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675905

RESUMO

For comprehensive gene expression analyses of the phytopathogenic fungus Botrytis cinerea, which infects a number of plant taxa and is a cause of substantial agricultural losses worldwide, we developed BEB, a web-based B. cinerea gene Expression Browser. This computationally inexpensive web-based application and its associated database contain manually curated RNA-Seq data for B. cinerea. BEB enables expression analyses of genes of interest under different culture conditions by providing publication-ready heatmaps depicting transcript levels, without requiring advanced computational skills. BEB also provides details of each experiment and user-defined gene expression clustering and visualization options. If needed, tables of gene expression values can be downloaded for further exploration, including, for instance, the determination of differentially expressed genes. The BEB implementation is based on open-source computational technologies that can be deployed for other organisms. In this case, the new implementation will be limited only by the number of transcriptomic experiments that are incorporated into the platform. To demonstrate the usability and value of BEB, we analyzed gene expression patterns across different conditions, with a focus on secondary metabolite gene clusters, chromosome-wide gene expression, previously described virulence factors, and reference genes, providing the first comprehensive expression overview of these groups of genes in this relevant fungal phytopathogen. We expect this tool to be broadly useful in B. cinerea research, providing a basis for comparative transcriptomics and candidate gene identification for functional assays.

15.
Methods Mol Biol ; 2328: 25-46, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34251618

RESUMO

Chromatin accessibility is directly linked with transcription in eukaryotes. Accessible regions associated with regulatory proteins are highly sensitive to DNase I digestion and are termed DNase I hypersensitive sites (DHSs). DHSs can be identified by DNase I digestion, followed by high-throughput DNA sequencing (DNase-seq). The single-base-pair resolution digestion patterns from DNase-seq allows identifying transcription factor (TF) footprints of local DNA protection that predict TF-DNA binding. The identification of differential footprinting between two conditions allows mapping relevant TF regulatory interactions. Here, we provide step-by-step instructions to build gene regulatory networks from DNase-seq data. Our pipeline includes steps for DHSs calling, identification of differential TF footprints between treatment and control conditions, and construction of gene regulatory networks. Even though the data we used in this example was obtained from Arabidopsis thaliana, the workflow developed in this guide can be adapted to work with DNase-seq data from any organism with a sequenced genome.


Assuntos
Cromatina/metabolismo , Mapeamento Cromossômico/métodos , Pegada de DNA/métodos , Desoxirribonuclease I/metabolismo , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/genética , Genômica , Ligação Proteica , Software , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Prog Neurobiol ; 205: 102122, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34284000

RESUMO

Memory consolidation requires activation of a gene expression program that allows de novo protein synthesis. But the molecular mechanisms that favour or restrict that program are poorly understood. The kinase c-Abl can modulate gene expression through transcription factors and chromatin modifiers. Here, we show that c-Abl ablation in the brain improves learning acquisition and memory consolidation in mice. Its absence also affects gene expression profiles in the mouse hippocampus. We found that genes involved in synaptic plasticity and actin cytoskeleton dynamics, such as Arp2 and Thorase, are up-regulated at the mRNA and protein levels in trained c-Abl KO mice and by a chemical-LTP stimulus. Trained c-Abl KO mice also show that dendritic spines are larger than in wild-type mice and present at a higher density. These results indicate that c-Abl kinase is an important part of the mechanism that limits or restricts signalling of relevant gene programs involved in morphological and functional spine changes upon neuronal stimulation.


Assuntos
Aprendizagem , Plasticidade Neuronal , Animais , Espinhas Dendríticas , Genes abl , Hipocampo , Consolidação da Memória , Camundongos , Neurônios , Sinapses
17.
Sci Rep ; 10(1): 7448, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366946

RESUMO

Cholesterol Gallstone Disease (GSD) is a common multifactorial disorder characterized by crystallization and aggregation of biliary cholesterol in the gallbladder. The global prevalence of GSD is ~10-20% in the adult population but rises to 28% in Chile (17% among men and 30% among women). The small intestine may play a role in GSD pathogenesis, but the molecular mechanisms have not been clarified. Our aim was to identify the role of the small intestine in GSD pathogenesis. Duodenal biopsy samples were obtained from patients with GSD and healthy volunteers. GSD status was defined by abdominal ultrasonography. We performed a transcriptome study in a discovery cohort using Illumina HiSeq. 2500, and qPCR, immunohistochemistry and immunofluorescence were used to validate differentially expressed genes among additional case-control cohorts. 548 differentially expressed genes between GSD and control subjects were identified. Enriched biological processes related to cellular response to zinc, and immune and antimicrobial responses were observed in GSD patients. We validated lower transcript levels of metallothionein, NPC1L1 and tight junction genes and higher transcript levels of genes involved in immune and antimicrobial pathways in GSD patients. Interestingly, serum zinc and phytosterol to cholesterol precursor ratios were lower in GSD patients. A significant association was observed between serum zinc and phytosterol levels. Our results support a model where proximal small intestine plays a key role in GSD pathogenesis. Zinc supplementation, modulation of proximal microbiota and/or intestinal barrier may be novel targets for strategies to prevent GSD.


Assuntos
Colelitíase/metabolismo , Colesterol/metabolismo , Duodeno/metabolismo , Inflamação/metabolismo , Junções Íntimas/metabolismo , Zinco/metabolismo , Adulto , Biópsia , Colelitíase/diagnóstico por imagem , Colelitíase/patologia , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Metalotioneína/metabolismo , Microbiota , Prevalência , RNA-Seq , Fatores de Risco , Proteínas de Junções Íntimas/metabolismo , Transcriptoma , Ultrassonografia , Adulto Jovem
18.
Mol Plant ; 12(12): 1545-1560, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31526863

RESUMO

Transcriptional regulation, determined by the chromatin structure and regulatory elements interacting at promoter regions, is a key step in plant responses to environmental cues. Nitrate (NO3-) is a nutrient signal that regulates the expression of hundreds of genes in Arabidopsis thaliana. Here, we integrate mRNA sequencing, genome-wide RNA polymerase II (RNPII), chromatin immunoprecipitation sequencing, and DNase sequencing datasets to establish the relationship between RNPII occupancy and chromatin accessibility in response to NO3- treatments in Arabidopsis roots. Genomic footprinting allowed us to identify in vivo regulatory elements controlling gene expression in response to NO3- treatments. NO3--modulated transcription factor (TF) footprints are important for a rapid increase in RNPII occupancy and transcript accumulation over time. We mapped key TF regulatory interactions and functionally validated the role of NAP, an NAC-domain containing TF, as a new regulatory factor in NO3- transport. Taken together, our study provides a comprehensive view of transcriptional networks in response to a nutrient signal in Arabidopsis roots.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Cromatina/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Nitratos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cromatina/efeitos dos fármacos , Cinética , Nitratos/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo
19.
Sci Rep ; 9(1): 2132, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765821

RESUMO

Whole human genome sequencing initiatives help us understand population history and the basis of genetic diseases. Current data mostly focuses on Old World populations, and the information of the genomic structure of Native Americans, especially those from the Southern Cone is scant. Here we present annotation and variant discovery from high-quality complete genome sequences of a cohort of 11 Mapuche-Huilliche individuals (HUI) from Southern Chile. We found approximately 3.1 × 106 single nucleotide variants (SNVs) per individual and identified 403,383 (6.9%) of novel SNVs events. Analyses of large-scale genomic events detected 680 copy number variants (CNVs) and 4,514 structural variants (SVs), including 398 and 1,910 novel events, respectively. Global ancestry composition of HUI genomes revealed that the cohort represents a sample from a marginally admixed population from the Southern Cone, whose main genetic component derives from Native American ancestors. Additionally, we found that HUI genomes contain variants in genes associated with 5 of the 6 leading causes of noncommunicable diseases in Chile, which may have an impact on the risk of prevalent diseases in Chilean and Amerindian populations. Our data represents a useful resource that can contribute to population-based studies and for the design of early diagnostics or prevention tools for Native and admixed Latin American populations.


Assuntos
Etnicidade/genética , Marcadores Genéticos , Genética Populacional , Genoma Humano , Genômica/métodos , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Chile , Estudos de Coortes , Variações do Número de Cópias de DNA , Feminino , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
20.
Methods Mol Biol ; 1761: 275-301, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525965

RESUMO

The rapid increase in the availability of transcriptomics data generated by RNA sequencing represents both a challenge and an opportunity for biologists without bioinformatics training. The challenge is handling, integrating, and interpreting these data sets. The opportunity is to use this information to generate testable hypothesis to understand molecular mechanisms controlling gene expression and biological processes (Fig. 1). A successful strategy to generate tractable hypotheses from transcriptomics data has been to build undirected network graphs based on patterns of gene co-expression. Many examples of new hypothesis derived from network analyses can be found in the literature, spanning different organisms including plants and specific fields such as root developmental biology.In order to make the process of constructing a gene co-expression network more accessible to biologists, here we provide step-by-step instructions using published RNA-seq experimental data obtained from a public database. Similar strategies have been used in previous studies to advance root developmental biology. This guide includes basic instructions for the operation of widely used open source platforms such as Bio-Linux, R, and Cytoscape. Even though the data we used in this example was obtained from Arabidopsis thaliana, the workflow developed in this guide can be easily adapted to work with RNA-seq data from any organism.


Assuntos
Arabidopsis/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de RNA , Transcriptoma , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica/métodos , Software , Biologia de Sistemas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA