RESUMO
High frame rate three-dimensional (3D) ultrasound imaging would offer excellent possibilities for the accurate assessment of carotid artery diseases. This calls for a matrix transducer with a large aperture and a vast number of elements. Such a matrix transducer should be interfaced with an application-specific integrated circuit (ASIC) for channel reduction. However, the fabrication of such a transducer integrated with one very large ASIC is very challenging and expensive. In this study, we develop a prototype matrix transducer mounted on top of multiple identical ASICs in a tiled configuration. The matrix was designed to have 7680 piezoelectric elements with a pitch of 300 µm × 150 µm integrated with an array of 8 × 1 tiled ASICs. The performance of the prototype is characterized by a series of measurements. The transducer exhibits a uniform behavior with the majority of the elements working within the -6 dB sensitivity range. In transmit, the individual elements show a center frequency of 7.5 MHz, a -6 dB bandwidth of 45%, and a transmit efficiency of 30 Pa/V at 200 mm. In receive, the dynamic range is 81 dB, and the minimum detectable pressure is 60 Pa per element. To demonstrate the imaging capabilities, we acquired 3D images using a commercial wire phantom.
Assuntos
Imageamento Tridimensional , Transdutores , Desenho de Equipamento , Ultrassonografia/métodos , Imageamento Tridimensional/métodos , Imagens de Fantasmas , Artérias Carótidas/diagnóstico por imagemRESUMO
Double-stage delay-multiply-and-sum (DS-DMAS) is an algorithm proposed for photoacoustic image reconstruction. The DS-DMAS algorithm offers a higher contrast than conventional delay-and-sum and delay-multiply and-sum but at the expense of higher computational complexity. Here, we utilized a compute unified device architecture (CUDA) graphics processing unit (GPU) parallel computation approach to address the high complexity of the DS-DMAS for photoacoustic image reconstruction generated from a commercial light-emitting diode (LED)-based photoacoustic scanner. In comparison with a single-threaded central processing unit (CPU), the GPU approach increased speeds by nearly 140-fold for 1024 × 1024 pixel image; there was no decrease in accuracy. The proposed implementation makes it possible to reconstruct photoacoustic images with frame rates of 250, 125, and 83.3 when the images are 64 × 64, 128 × 128, and 256 × 256, respectively. Thus, DS-DMAS can be efficiently used in clinical devices when coupled with CUDA GPU parallel computation.
Assuntos
Algoritmos , Gráficos por Computador , Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Processamento de Sinais Assistido por Computador , Desenho de Equipamento , Imagens de Fantasmas , Técnicas Fotoacústicas/instrumentação , Razão Sinal-Ruído , TomografiaRESUMO
Arteriosclerosis results from lipid buildup in artery walls, leading to plaque formation, and is a leading cause of death. Plaque rupture can cause blood clots that might lead to a stroke. Distinguishing plaque types is a challenge, but ultrasound (US) elastography can help by assessing plaque composition based on strain values. Since the artery has a circular structure, an accurate axial and lateral displacement strategy is needed to derive the radial and circumferential strains. A high-precision lateral displacement is challenging due to the lack of phase information in the lateral direction of the beamformed RF data. Previously, our group has developed a compounding technique in which the lateral displacement is estimated using triangulation of the axial displacement estimated from transmitting and beamforming US beams at ±20°. However, transmitting with a single plane wave will reduce signal-to-noise and contrast-to-noise ratio as well as lateral resolution. In this article, we combine our displacement compounding with coherent compounding. Instead of transmitting a single plane wave, multiple plane waves are transmitted at certain angles centered on the angle of the beamforming grids, and then, the backscattered wavefronts are beamformed and coherently compounded on the center of the transmit beams (-20°, +20°, and 0°). The numerical investigation using the GE9LD probe ( f0 = 5.32 MHz, pitch = 230 µ m, and width = 43.9 mm) led us to 19 plane waves spanning angles within -10° to 10° (with respect to center of the transmit beams), resulting in a total of 57 plane wave transmit (for three beamforming grids at 0° and ±20°). FIELD II simulations of a cylindrically shaped phantom (mimicking the carotid artery) at a signal-to-noise ratio (SNR) ≥ 20 dB show that the proposed method decreases the root-mean-square error (RMSE) of the lateral displacement and strain estimations by 40% and 45% compared to the previous method, respectively. The results of our experiments with a carotid artery phantom [made out of 10% polyvinyl alcohol (PVA)] show that the proposed method provides strain images with higher quality and more in agreement with the theory, with 26% lower standard deviation, especially at the peak systolic phase. The proposed method paves the path toward improved quality in vivo 2-D strain imaging using our displacement compounding technique and translating it to 3-D with a row-column array.
Assuntos
Artérias Carótidas , Técnicas de Imagem por Elasticidade , Imagens de Fantasmas , Artérias Carótidas/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Processamento de Sinais Assistido por Computador , Razão Sinal-RuídoRESUMO
With the huge progress in micro-electronics and artificial intelligence, the ultrasound probe has become the bottleneck in further adoption of ultrasound beyond the clinical setting (e.g. home and monitoring applications). Today, ultrasound transducers have a small aperture, are bulky, contain lead and are expensive to fabricate. Furthermore, they are rigid, which limits their integration into flexible skin patches. New ways to fabricate flexible ultrasound patches have therefore attracted much attention recently. First prototypes typically use the same lead-containing piezo-electric materials, and are made using micro-assembly of rigid active components on plastic or rubber-like substrates. We present an ultrasound transducer-on-foil technology based on thermal embossing of a piezoelectric polymer. High-quality two-dimensional ultrasound images of a tissue mimicking phantom are obtained. Mechanical flexibility and effective area scalability of the transducer are demonstrated by functional integration into an endoscope probe with a small radius of 3 mm and a large area (91.2×14 mm2) non-invasive blood pressure sensor.
Assuntos
Inteligência Artificial , Eletrônica , Ultrassonografia , Imagens de Fantasmas , Eletricidade , Transdutores , Desenho de EquipamentoRESUMO
Transcranial ultrasound imaging (TUI) is a diagnostic modality with numerous applications, but unfortunately, it is hindered by phase aberration caused by the skull. In this article, we propose to reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. First, the compressional sound velocity of the aberrator (i.e., the skull) is estimated using the bidirectional headwave technique. The medium is described with four layers (i.e., lens, water, skull, and water), and a fast marching method calculates the travel times between individual array elements and image pixels. Finally, a delay-and-sum algorithm is used for image reconstruction with coherent compounding. The point spread function (PSF) in a wire phantom image and reconstructed with the conventional technique (using a constant sound speed throughout the medium), and the proposed method was quantified with numerical synthetic data and experiments with a bone-mimicking plate and a human skull, compared with the PSF achieved in a ground truth image of the medium without the aberrator (i.e., the bone plate or skull). A phased-array transducer (P4-1, ATL/Philips, 2.5 MHz, 96 elements, pitch = 0.295 mm) was used for the experiments. The results with the synthetic signals, the bone-mimicking plate, and the skull indicated that the proposed method reconstructs the scatterers with an average lateral/axial localization error of 0.06/0.14 mm, 0.11/0.13 mm, and 1.0/0.32 mm, respectively. With the human skull, an average contrast ratio (CR) and full-width-half-maximum (FWHM) of 37.1 dB and 1.75 mm were obtained with the proposed approach, respectively. This corresponds to an improvement of CR and FWHM by 7.1 dB and 36% compared with the conventional method, respectively. These numbers were 12.7 dB and 41% with the bone-mimicking plate.
Assuntos
Processamento de Imagem Assistida por Computador , Crânio , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Crânio/diagnóstico por imagem , UltrassonografiaRESUMO
In a recent study, we proposed a technique to correct aberration caused by the skull and reconstruct a transcranial B-mode image with a refraction-corrected synthetic aperture imaging (SAI) scheme. Given a sound speed map, the arrival times were calculated using a fast marching technique (FMT), which solves the Eikonal equation and, therefore, is computationally expensive for real-time imaging. In this article, we introduce a two-point ray tracing method, based on Fermat's principle, for fast calculation of the travel times in the presence of a layered aberrator in front of the ultrasound probe. The ray tracing method along with the reconstruction technique is implemented on a graphical processing unite (GPU). The point spread function (PSF) in a wire phantom image reconstructed with the FMT and the GPU implementation was studied with numerical synthetic data and experiments with a bone-mimicking plate and a sagittally cut human skull. The numerical analysis showed that the error on travel times is less than 10% of the ultrasound temporal period at 2.5 MHz. As a result, the lateral resolution was not significantly degraded compared with images reconstructed with FMT-calculated travel times. The results using the synthetic, bone-mimicking plate, and skull dataset showed that the GPU implementation causes a lateral/axial localization error of 0.10/0.20, 0.15/0.13, and 0.26/0.32 mm compared with a reference measurement (no aberrator in front of the ultrasound probe), respectively. For an imaging depth of 70 mm, the proposed GPU implementation allows reconstructing 19 frames/s with full synthetic aperture (96 transmission events) and 32 frames/s with multiangle plane wave imaging schemes (with 11 steering angles) for a pixel size of [Formula: see text]. Finally, refraction-corrected power Doppler imaging is demonstrated with a string phantom and a bone-mimicking plate placed between the probe and the moving string. The proposed approach achieves a suitable frame rate for clinical scanning while maintaining the image quality.
Assuntos
Processamento de Imagem Assistida por Computador , Crânio , Ultrassonografia , Algoritmos , Humanos , Imagens de Fantasmas , SomRESUMO
In photoacoustic tomography (PAT) systems, the tangential resolution decreases due to the finite size of the transducer as the off-center distance increases. To address this problem, we propose a multi-angle detection approach in which the transducer used for data acquisition rotates around its center (with specific angles) as well as around the scanning center. The angles are calculated based on the central frequency and diameter of the transducer and the radius of the region-of-interest (ROI). Simulations with point-like absorbers (for point-spread-function evaluation) and a vasculature phantom (for quality assessment), and experiments with ten 0.5 mm-diameter pencil leads and a leaf skeleton phantom are used for evaluation of the proposed approach. The results show that a location-independent tangential resolution is achieved with 150 spatial sampling and central rotations with angles of ±8°/±16°. With further developments, the proposed detection strategy can replace the conventional detection (rotating a transducer around ROI) in PAT.
RESUMO
Photoacoustic imaging (PAI) is an emerging functional and molecular imaging technology that has attracted much attention in the past decade. Recently, many researchers have used the vantage system from Verasonics for simultaneous ultrasound (US) and photoacoustic (PA) imaging. This was the motivation to write on the details of US/PA imaging system implementation and characterization using Verasonics platform. We have discussed the experimental considerations for linear array based PAI due to its popularity, simple setup, and high potential for clinical translatability. Specifically, we describe the strategies of US/PA imaging system setup, signal generation, amplification, data processing and study the system performance.
RESUMO
Phase aberration in transcranial ultrasound imaging (TUI) caused by the human skull leads to an inaccurate image reconstruction. In this article, we present a novel method for estimating the speed of sound and an adaptive beamforming technique for phase aberration correction in a flat polyvinylchloride (PVC) slab as a model for the human skull. First, the speed of sound of the PVC slab is found by extracting the overlapping quasi-longitudinal wave velocities of symmetrical Lamb waves in the frequency-wavenumber domain. Then, the thickness of the plate is determined by the echoes from its front and back side. Next, an adaptive beamforming method is developed, utilizing the measured sound speed map of the imaging medium. Finally, to minimize reverberation artifacts caused by strong scatterers (i.e., needles), a dual probe setup is proposed. In this setup, we image the medium from two opposite directions, and the final image can be the minimum intensity projection of the inherently co-registered images of the opposed probes. Our results confirm that the Lamb wave method estimates the longitudinal speed of the slab with an error of 3.5% and is independent of its shear wave speed. Benefiting from the acquired sound speed map, our adaptive beamformer reduces (in real time) a mislocation error of 3.1, caused by an 8 mm slab, to 0.1 mm. Finally, the dual probe configuration shows 7 dB improvement in removing reverberation artifacts of the needle, at the cost of only 2.4-dB contrast loss. The proposed image formation method can be used, e.g., to monitor deep brain stimulation procedures and localization of the electrode(s) deep inside the brain from two temporal bones on the sides of the human skull.
Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Imagens de Fantasmas , Som , UltrassonografiaRESUMO
Simultaneous visualization of the teeth and periodontium is of significant clinical interest for image-based monitoring of periodontal health. We recently reported the application of a dual-modality photoacoustic-ultrasound (PA-US) imaging system for resolving periodontal anatomy and periodontal pocket depths in humans. This work utilized a linear array transducer attached to a stepper motor to generate 3D images via maximum intensity projection. This prior work also used a medical head immobilizer to reduce artifacts during volume rendering caused by motion from the subject (e.g., breathing, minor head movements). However, this solution does not completely eliminate motion artifacts while also complicating the imaging procedure and causing patient discomfort. To address this issue, we report the implementation of an image registration technique to correctly align B-mode PA-US images and generate artifact-free 2D cross-sections. Application of the deshaking technique to PA phantoms revealed 80% similarity to the ground truth when shaking was intentionally applied during stepper motor scans. Images from handheld sweeps could also be deshaken using an LED PA-US scanner. In ex vivo porcine mandibles, pigmentation of the enamel was well-estimated within 0.1 mm error. The pocket depth measured in a healthy human subject was also in good agreement with our prior study. This report demonstrates that a modality-independent registration technique can be applied to clinically relevant PA-US scans of the periodontium to reduce operator burden of skill and subject discomfort while showing potential for handheld clinical periodontal imaging.
RESUMO
In our paper titled "Lamb Waves and Adaptive Beamforming for Aberration Correction in Medical Ultrasound Imaging" [1], we mentioned that the superposition of the different symmetric (S) modes in the frequency-wavenumber (f-k) domain results in a high intensity region where its slope corresponds to the longitudinal wave speed in the slab. However, we have recently understood that this high intensity region belongs to the propagation of a wave called lateral wave or head wave [2-5]. It is generated if the longitudinal sound speed of the aberrator (i.e. the PVC slab) is larger than that of water and if the incident wavefront is curved. When the incidence angle at the interface between water and PVC is near the critical angle, the refracted wave in PVC re-radiates a small part of its energy into the fluid (i.e. the head wave). As discussed in [4], if the thickness of the waveguide is larger than the wavelength, the first arriving signal is the head wave. This is also the case in our study [1] where the ultrasound wavelength of a compressional wave in PVC was close to 1 mm, and a PVC slab with a thickness of 8 mm was used.
RESUMO
BACKGROUND: In Photoacoustic imaging (PAI), the most prevalent beamforming algorithm is delay-and-sum (DAS) due to its simple implementation. However, it results in a low quality image affected by the high level of sidelobes. Coherence factor (CF) can be used to address the sidelobes in the reconstructed images by DAS, but the resolution improvement is not good enough, compared to the high resolution beamformers such as minimum variance (MV). In this paper, it is proposed to use high-resolution-CF (HRCF) weighting technique in which MV is used instead of the existing DAS in the formula of the conventional CF. RESULTS: The higher performance of HRCF is proved numerically and experimentally. The quantitative results obtained with the simulations show that at the depth of 40 mm, in comparison with DAS+CF and MV+CF, HRCF improves the full-width-half-maximum of about 91% and 15% and the signal-to-noise ratio about 40% and 14%, respectively. CONCLUSION: Proposed method provides a high resolution along with a low level of sidelobes for PAI.
RESUMO
In linear-array photoacoustic imaging (PAI), beamforming methods can be used to reconstruct the images. Delay-and-sum (DAS) beamformer is extensively used due to its simple implementation. However, this algorithm results in high level of sidelobes and low resolution. In this paper, it is proposed to form the photoacoustic (PA) images through a regularized inverse problem to address these limitations and improve the image quality. We define a forward/backward problem of the beamforming and solve the inverse problem using a sparse constraint added to the model which forces the sparsity of the output beamformed data. It is shown that the proposed Sparse beamforming (SB) method is robust against noise due to the sparsity nature of the problem. Numerical results show that the SB method improves the signal-to-noise ratio (SNR) for about 98.69â¯dB, 82.26â¯dB and 74.73â¯dB, in average, compared to DAS, delay-multiply-and-sum (DMAS) and double stage-DMAS (DS-DMAS), respectively. Also, quantitative evaluation of the experimental results shows a significant noise reduction using SB algorithm. In particular, the contrast ratio of the wire phantom at the depth of 30â¯mm is improved about 103.97â¯dB, 82.16â¯dB and 65.77â¯dB compared to DAS, DMAS and DS-DMAS algorithms, respectively, indicating a better performance of the proposed SB in terms of noise reduction.
RESUMO
Delay-and-sum (DAS) is one of the most common algorithms used to construct the photoacoustic images due to its low complexity. However, it results in images with high sidelobes and low resolution. Delay-and-standard-deviation (DASD) weighting factor can improve the contrast of the images compared to DAS. However, it still suffers from high sidelobes. In this work, a new weighting factor, named delay-multiply-and-standard-deviation (DMASD) is introduced to enhance the contrast of the reconstructed images compared to other mentioned methods. In the proposed method, the SD of the mutual multiplied delayed signals are calculated, normalized and multiplied to DAS beamformed data. The results show that DMASD improves the signal-to-noise-ratio about 19.29 and 7.3 dB compared to DAS and DASD, respectively, for in vivo imaging of the sentinel lymph node. Moreover, the contrast ratio is improved by the DMASD about 23.61 and 10.81 dB compared to DAS and DASD, respectively.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas , Linfonodo Sentinela/diagnóstico por imagem , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído , Estatística como AssuntoRESUMO
In acoustic-resolution photoacoustic microscopy (AR-PAM) systems, the lateral resolution in the focal zone of the ultrasound (US) transducer is determined by the numerical aperture (NA) of the transducer. To have a high lateral resolution, a large NA is used. However, the larger the NA, the smaller the depth of focus [DOF]. As a result, the lateral resolution is deteriorated at depths out of the focal region. The synthetic aperture focusing technique (SAFT) along with a beamformer can be used to improve the resolution outside the focal region. In this work, for image formation in AR-PAM, we propose the double-stage delay-multiply-and-sum (DS_DMAS) algorithm to be combined with SAFT. The proposed method is evaluated experimentally using hair targets and in vivo vasculature imaging. It is shown that DS_DMAS provides a higher resolution and contrast compared to other methods. For the B-mode images obtained using the hair phantom, the proposed method reduces the average noise level for all the depths by about 134%, 57% and 23%, compared to the original low- resolution, SAFT+DAS and SAFT+DMAS methods, respectively. All the results indicate that the proposed method can be an appropriate algorithm for image formation in AR-PAM systems.
Assuntos
Acústica , Microscopia/métodos , Neovascularização Fisiológica , Técnicas Fotoacústicas/métodos , Razão Sinal-Ruído , Animais , Feminino , Processamento de Imagem Assistida por Computador , Ratos Sprague-DawleyRESUMO
Photoacoustic imaging (PAI) is a promising medical imaging modality providing the spatial resolution of ultrasound imaging and the contrast of optical imaging. For linear-array PAI, a beamformer can be used as the reconstruction algorithm. Delay-and-sum (DAS) is the most prevalent beamforming algorithm in PAI. However, using DAS beamformer leads to low-resolution images as well as high sidelobes due to nondesired contribution of off-axis signals. Coherence factor (CF) is a weighting method in which each pixel of the reconstructed image is weighted, based on the spatial spectrum of the aperture, to mainly improve the contrast. We demonstrate that the numerator of the formula of CF contains a DAS algebra and propose the use of a delay-multiply-and-sum beamformer instead of the available DAS on the numerator. The proposed weighting technique, modified CF (MCF), has been evaluated numerically and experimentally compared to CF. It was shown that MCF leads to lower sidelobes and better detectable targets. The quantitative results of the experiment (using wire targets) show that MCF leads to for about 45% and 40% improvement, in comparison with CF, in the terms of signal-to-noise ratio and full-width-half-maximum, respectively.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Simulação por Computador , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
In linear-array transducer-based photoacoustic (PA) imaging, B-scan PA images are formed using the raw channel PA signals. Delay-and-sum (DAS) is the most prevalent algorithm due to its simple implementation, but it leads to low-quality images. Delay-multiply-and-sum (DMAS) provides a higher image quality in comparison with DAS while it imposes a computational burden of O ( M2 ) . We introduce a nonlinear (NL) beamformer for linear-array PA imaging, which uses the p'th root of the detected signals and imposes the complexity of DAS [O ( M ) ]. The proposed algorithm is evaluated numerically and experimentally [wire-target and in-vivo sentinel lymph node (SLN) imaging], and the effects of the parameter p are investigated. The results show that the NL algorithm, using a root of p (NL_p), leads to lower sidelobes and higher signal-to-noise ratio compared with DAS and DMAS, for (p > 2). The sidelobes level (for the wire-target phantom), at the depth of 11.4 mm, are about -31, -52, -52, -67, -88, and -109 dB, for DAS, DMAS, NL_2, NL_3, NL_4, and NL_5, respectively, indicating the superiority of the NL_p algorithm. In addition, the best value of p for SLN imaging is reported to be 12.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas , Linfonodo Sentinela/diagnóstico por imagem , Ultrassonografia , Algoritmos , Animais , Modelos Teóricos , Imagens de Fantasmas , Ratos , Razão Sinal-Ruído , TransdutoresRESUMO
In ultrasound (US) imaging, delay and sum (DAS) is the most common beamformer, but it leads to low-quality images. Delay multiply and sum (DMAS) was introduced to address this problem. However, the reconstructed images using DMAS still suffer from the level of side lobes and low noise suppression. Here, a novel beamforming algorithm is introduced based on expansion of the DMAS formula. We found that there is a DAS algebra inside the expansion, and we proposed use of the DMAS instead of the DAS algebra. The introduced method, namely double-stage DMAS (DS-DMAS), is evaluated numerically and experimentally. The quantitative results indicate that DS-DMAS results in an approximately 25% lower level of side lobes compared with DMAS. Moreover, the introduced method leads to 23%, 22% and 43% improvement in signal-to-noise ratio, full width at half-maximum and contrast ratio, respectively, compared with the DMAS beamformer.
Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Imagens de Fantasmas , Razão Sinal-RuídoRESUMO
Light-emitting diode-based photoacoustic imaging is more compact and affordable than laser-based systems, but it has low power and hence a high number of replicates. Here, we describe double-stage delay-multiply-and-sum (DS-DMAS) to improve image quality collected on a LED-based scanner. DS-DMAS was evaluated experimentally using point targets (in different laterals and depths) as well as a hair and a rabbit eye. This algorithm can compensate for the low SNR of LED-based systems and offer better lateral resolution of about 60%, 25%, higher contrast ratio of about 97%, 34%, and better full-width-half-maximum of about 60%, 25%, versus delay-and-sum) and delay-multiply-and-sum, respectively. More importantly, DS-DMAS offers this using a smaller number of frames (only 2% of all the frames). These results indicate that DS-DMAS might be a valuable tool in the translation of LED-based and other low power PAI systems.
RESUMO
Delay-and-sum (DAS) is the most common algorithm used in photoacoustic (PA) image formation. However, this algorithm results in a reconstructed image with a wide mainlobe and high level of sidelobes. Minimum variance (MV), as an adaptive beamformer, overcomes these limitations and improves the image resolution and contrast. In this paper, a novel algorithm, named Modified-Sparse-MV (MS-MV), is proposed in which a â 1-norm constraint is added to the MV minimization problem after some modifications, in order to suppress the sidelobes more efficiently, compared to MV. The added constraint can be interpreted as the sparsity of the output of the MV beamformed signals. Since the final minimization problem is convex, it can be solved efficiently using a simple iterative algorithm. The numerical results show that the proposed method, MS-MV beamformer, improves the signal-to-noise (SNR) about 19.48 dB, in average, compared to MV. Also, the experimental results, using a wire-target phantom, show that MS-MV leads to SNR improvement of about 2.64 dB in comparison with the MV.