Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trop Anim Health Prod ; 52(3): 1269-1276, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31848834

RESUMO

Low nutrient intake of short-horn zebu (SHZ) cattle raised under extensive grazing systems results in delayed attainment of mature market weights and consequently increased methane production over time. The purpose of this study was to evaluate and compare the effect of providing grazing SHZ weaner bulls with a supplement varying in crude protein on methane emission using the Intergovernmental Panel on Climate Change (IPCC) Tier 2 and a modified Tier 3 approaches. Weaner bulls were allocated to four treatments: grazing only (GZ), grazing plus a supplement containing either 90 (GZS_90), 110 (GZS_110), or 130 g CP/kg DM (GZS_130). Across treatments, monthly CH4 emissions increased with time. Based on the IPCC Tier 2 method, the highest CH4 production from cattle was estimated from weaner bulls on GZ, while the Tier 3 estimated the highest CH4 production to be from cattle on GZS_130. Although the Tier 2 approach showed no significant difference between treatments, the Tier 3 showed that weaner bulls raised under GZS_130 had the highest production of methane as percentage of gross energy intake. Irrespective of method, weaner bulls on GZ produced more (P < 0.001) CH4 per kilogram live weight gain than supplemented cattle. Compared with Tier 3, the Tier 2 estimated 22.9% higher CH4 per kilogram live weight gain for weaner bulls on GZ. These data suggest that supplementing SHZ weaner bulls with a supplement containing110 g CP/kg DM reduces methane emission per kilogram of live weight gain by 30.7%.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Proteínas Alimentares/administração & dosagem , Metano/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Suplementos Nutricionais , Ingestão de Energia , Feminino , Masculino , Desmame , Aumento de Peso
2.
Trop Anim Health Prod ; 51(8): 2269-2278, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31152335

RESUMO

Natural compounds from medicinal plants provide safe and sustainable alternatives to synthetic anthelmintics. In this study, we assessed in vitro and in vivo anthelmintic activity of Cassia occidentalis (NH-A) and Euphorbia hirta (NH-B) and compared it with levamisole-HCl. The shoots of NH-A and whole plant of NH-B were used to prepare extracts using 70% methanol which were used in the in vitro and in vivo assays. In vitro assays of crude methanolic extracts (CMEs) of NH-A and NH-B on larvae of mixed gastrointestinal nematodes (GINs) of goats revealed mortalities of 95.7% (at 100 mg ml-1) and 98.1% (at 50 mgml-1) 24 h postexposure. In vivo assays of NH-A administered orally at doses of 100, 300, 900, and 2700 mg kg-1 bwt revealed dose- and time-dependent anthelmintic effects in goats experimentally infected with mixed species of GINs. NH-B exhibited similar properties when administered at doses of 50, 100, 200, and 400 mg kg-1 bwt. Both NH-A (900 mg kg-1 bwt) and levamisole (7.5 mg kg-1 bwt) achieved a 100% reduction in fecal egg count per gram (EPG) on day 21 and day 14 respectively posttreatment. NH-B (400 mg kg-1 bwt) achieved 93.1% and 86.1% reduction in fecal EPG 7 and 14 days postexposure respectively compared with 88.2% and 82.3% reduction with levamisole-HCl 7 and 14 days postexposure. Our results show that extracts of both plants can disrupt helminth lifecycles by suppressing the egg-laying capacity in adult worms but also kill their infective larvae. Future studies should aim at establishing synergies or antagonisms between the two plant extracts and further development for control of helminths in goats.


Assuntos
Anti-Helmínticos/uso terapêutico , Euphorbia/química , Doenças das Cabras/tratamento farmacológico , Infecções por Nematoides/veterinária , Extratos Vegetais/uso terapêutico , Senna/química , Animais , Fezes/parasitologia , Doenças das Cabras/epidemiologia , Doenças das Cabras/parasitologia , Cabras , Levamisol , Nematoides , Infecções por Nematoides/tratamento farmacológico , Infecções por Nematoides/epidemiologia , Infecções por Nematoides/parasitologia , Contagem de Ovos de Parasitas/veterinária , Extratos Vegetais/administração & dosagem , Uganda/epidemiologia
3.
PLoS One ; 19(1): e0296353, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38165886

RESUMO

Indigenous goat breeds in Uganda are classified based on average body size parameters and coat color. However, variations in the body size of animals may be influenced by several factors, including management and the environment. To understand the effect of the agroecological zone on the physical characteristics and live weight of Uganda's indigenous goats, this study evaluated the body size characteristics of the three indigenous goat breeds of Uganda across ten agroecological zones. The cross-sectional survey was conducted in 323 households from the ten zones, where 1020 goats composed of three breeds (Mubende, Kigezi, and Small East African) were sampled and measured for body weight, linear body size, and age. We confirmed that Mubende and Kigezi goats from the original homeland had a higher mean body weight than reported in FAO reports. In addition, Mubende appeared to perform better in pastoral rangelands, with a higher mean body weight (38.1 kg) and body size being significantly higher (P < 0.0001) compared to other zones. The mean body weight for the Kigezi breed in the original homeland (34 kg) was comparable to those from Western Savannah grasslands and pastoral rangelands and less than that initially reported by FAO (30 kg). Similarly, there was no significant difference in the linear body size characteristics of Kigezi goats in the home zone of highland ranges relative to those found in other agroecological zones (P > 0.05). Although the Small East African goats were originally found in Northwestern Savannah grassland and Northeastern dryland zones, they performed poorly regarding mean body weight and body size characteristics in the former zone. In the Northwestern Savannah grasslands, the mean body weight (23.8 kg) was even less than that reported by FAO, which ranged between 25 and 30 kg. Finally, we confirmed that Mubende and Kigezi goats are significantly heavier than small East African goats (p ≤ 0.0001). The results of this study can be useful in designing precise management strategies to improve indigenous goat productivity in different environments in Uganda.


Assuntos
Cabras , Animais , Cabras/genética , Uganda , Estudos Transversais , Tamanho Corporal , Peso Corporal
4.
Front Genet ; 15: 1385611, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873114

RESUMO

Knowledge about genetic diversity and population structure among goat populations is essential for understanding environmental adaptation and fostering efficient utilization, development, and conservation of goat breeds. Uganda's indigenous goats exist in three phenotypic groups: Mubende, Kigezi, and Small East African. However, a limited understanding of their genetic attributes and population structure hinders the development and sustainable utilization of the goats. Using the Goat Illumina 60k chip International Goat Genome Consortium V2, the whole-genome data for 1,021 indigenous goats sourced from 10 agroecological zones in Uganda were analyzed for genetic diversity and population structure. A total of 49,337 (82.6%) single-nucleotide polymorphism markers were aligned to the ARS-1 goat genome and used to assess the genetic diversity, population structure, and kinship relationships of Uganda's indigenous goats. Moderate genetic diversity was observed. The observed and expected heterozygosities were 0.378 and 0.383, the average genetic distance was 0.390, and the average minor allele frequency was 0.30. The average inbreeding coefficient (Fis) was 0.014, and the average fixation index (Fst) was 0.016. Principal component analysis, admixture analysis, and discriminant analysis of principal components grouped the 1,021 goat genotypes into three genetically distinct populations that did not conform to the known phenotypic populations but varied across environmental conditions. Population 1, comprising Mubende (90%) and Kigezi (8.1%) goats, is located in southwest and central Uganda, a warm and humid environment. Population 2, which is 59% Mubende and 49% Small East African goats, is located along the Nile Delta in northwestern Uganda and around the Albertine region, a hot and humid savannah grassland. Population 3, comprising 78.4% Small East African and 21.1% Mubende goats, is found in northeastern to eastern Uganda, a hot and dry Commiphora woodlands. Genetic diversity and population structure information from this study will be a basis for future development, conservation, and sustainable utilization of Uganda's goat genetic resources.

5.
Front Artif Intell ; 7: 1446368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144542

RESUMO

In Uganda, the absence of a unified dataset for constructing machine learning models to predict Foot and Mouth Disease outbreaks hinders preparedness. Although machine learning models exhibit excellent predictive performance for Foot and Mouth Disease outbreaks under stationary conditions, they are susceptible to performance degradation in non-stationary environments. Rainfall and temperature are key factors influencing these outbreaks, and their variability due to climate change can significantly impact predictive performance. This study created a unified Foot and Mouth Disease dataset by integrating disparate sources and pre-processing data using mean imputation, duplicate removal, visualization, and merging techniques. To evaluate performance degradation, seven machine learning models were trained and assessed using metrics including accuracy, area under the receiver operating characteristic curve, recall, precision and F1-score. The dataset showed a significant class imbalance with more non-outbreaks than outbreaks, requiring data augmentation methods. Variability in rainfall and temperature impacted predictive performance, causing notable degradation. Random Forest with borderline SMOTE was the top-performing model in a stationary environment, achieving 92% accuracy, 0.97 area under the receiver operating characteristic curve, 0.94 recall, 0.90 precision, and 0.92 F1-score. However, under varying distributions, all models exhibited significant performance degradation, with random forest accuracy dropping to 46%, area under the receiver operating characteristic curve to 0.58, recall to 0.03, precision to 0.24, and F1-score to 0.06. This study underscores the creation of a unified Foot and Mouth Disease dataset for Uganda and reveals significant performance degradation in seven machine learning models under varying distributions. These findings highlight the need for new methods to address the impact of distribution variability on predictive performance.

6.
NPJ Vaccines ; 9(1): 174, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39294184

RESUMO

Vaccines are the most effective and sustainable intervention to control ticks and tick-borne diseases (TBD). Using a personalized vaccine design based on regional tick genotypes, a Rhipicephalus appendiculatus Subolesin protective antigen was used in a field trial evaluating tick vaccine efficacy, effectiveness, and safety in cattle infested with multiple tick species in different Ugandan agro-ecological zones. Vaccination with SUB was safe with a protective capacity against anemia and infection, and reduced the number of infested cattle, tick fitness (feeding and reproduction) with vaccine effectiveness against multiple tick species between 93.2% at 167-196 days post-vaccination (dpv) and 61.4% at 251-327 dpv. Total integrated vaccine efficacy/effectiveness was estimated as 98.8%. The Subolesin-based vaccine is protective against multiple cattle tick infestations under field conditions in Uganda. These results support registration and commercialization of the vaccine to reduce tick populations and associated risks for human and animal TBD and chemical acaracides in Uganda.

7.
Vaccines (Basel) ; 10(8)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36016215

RESUMO

Vaccination is an environmentally-friendly alternative for tick control. The tick antigen Subolesin (SUB) has shown protection in vaccines for the control of multiple tick species in cattle. Additionally, recent approaches in quantum vaccinomics have predicted SUB-protective epitopes and the peptide sequences involved in protein−protein interactions in this tick antigen. Therefore, the identification of B-cell−reactive epitopes by epitope mapping using a SUB peptide array could be essential as a novel strategy for vaccine development. Subolesin can be used as a model to evaluate the effectiveness of these approaches for the identification of protective epitopes related to vaccine protection and efficacy. In this study, the mapping of B-cell linear epitopes of SUB from three different tick species common in Uganda (Rhipicephalus appendiculatus, R. decoloratus, and Amblyomma variegatum) was conducted using serum samples from two cattle breeds immunized with SUB-based vaccines. The results showed that in cattle immunized with SUB from R. appendiculatus (SUBra) all the reactive peptides (Z-score > 2) recognized by IgG were also significant (Z-ratio > 1.96) when compared to the control group. Additionally, some of the reactive peptides recognized by IgG from the control group were also recognized in SUB cocktail−immunized groups. As a significant result, cattle groups that showed the highest vaccine efficacy were Bos indicus immunized with a SUB cocktail (92%), and crossbred cattle were immunized with SUBra (90%) against R. appendiculatus ticks; the IgG from these groups recognized overlapping epitopes from the peptide SPTGLSPGLSPVRDQPLFTFRQVGLICERMMKERESQIRDEYDHVLSAKLAEQYDTFVKFTYDQKRFEGATPSYLS (Z-ratio > 1.96), which partially corresponded to a Q38 peptide and the SUB protein interaction domain. These identified epitopes could be related to the protection and efficacy of the SUB-based vaccines, and new chimeras containing these protective epitopes could be designed using this new approach.

8.
Vaccines (Basel) ; 11(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36679944

RESUMO

Ticks are worldwide ectoparasites to humans and animals, and are associated with numerous health and economic effects. Threatening over 80% of the global cattle population, tick and tick-borne diseases (TTBDs) particularly constrain livestock production in the East, Central and Southern Africa. This, therefore, makes their control critical to the sustainability of the animal industry in the region. Since ticks are developing resistance against acaricides, anti-tick vaccines (ATVs) have been proposed as an environmentally friendly control alternative. Whereas they have been used in Latin America and Australia to reduce tick populations, pathogenic infections and number of acaricide treatments, commercially registered ATVs have not been adopted in tropical Africa for tick control. This is majorly due to their limited protection against economically important tick species of Africa and lack of research. Recent advances in various omics technologies and reverse vaccinology have enabled the identification of many candidate anti-tick antigens (ATAs), and are likely to usher in the next generation of vaccines, for which Africa should prepare to embrace. Herein, we highlight some scientific principles and approaches that have been used to identify ATAs, outline characteristics of a desirable ATA for vaccine design and propose the need for African governments to investment in ATV research to develop vaccines relevant to local tick species (personalized vaccines). We have also discussed the prospect of incorporating anti-tick vaccines into the integrated TTBDs control strategies in the sub-Saharan Africa, citing the case of Uganda.

9.
Vaccines (Basel) ; 10(10)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36298461

RESUMO

A collaboration program was established between the group of Health and Biotechnology (SaBio) of the IREC Institute of Game and Wildlife Research (CSIC-UCLM-JCCM, Spain) and the National Agricultural Research Organization of Uganda (NARO) for the development of vaccines for the control of cattle ticks in Uganda. Controlled pen trials identified a tick protective antigen, Rhipicephalus appendiculatus Subolesin, and a cross-species-effective vaccine formulation. As the next step, a controlled vaccine field trial has been approved by Ugandan state regulatory authorities, the Uganda National Council for Science and Technology (UNCST) and the National Drug Authority (NDA), to evaluate the efficacy and effectiveness of the vaccine formulation for the control of cattle tick infestations under field conditions. The results of this trial may lead to the approval of the vaccine for application in Uganda to improve cattle health and production while reducing the use of acaricides.

10.
Vaccine ; 40(32): 4564-4573, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35728991

RESUMO

Tick vaccines are necessary as part of a One Health approach for the control of tick infestations and tick-borne diseases. Subolesin (SUB, also known as 4D8) is a tick protective antigen that has shown efficacy in vaccine formulations for the control of ectoparasite infestations and pathogen infection/transmission. A recent proof-of-concept study reported oral vaccination combining Rhipicephalus microplus SUB with heat inactivated Mycobacterium bovis (IV) as an immunostimulant for the control of cattle tick infestations. Based on the efficacy of Rhipicephalus decoloratus SUB for the control of multiple cattle tick species in Uganda, herein we design a controlled pen trial using an oral formulation combining R. decoloratus SUB with IV for the control of R. decoloratus and Rhipicephalus appendiculatus cattle tick infestations. Vaccine efficacy (E) of SUB + IV on tick life cycle was compared with IV and SUB alone and with PBS as control. The IgG antibody titers against SUB and M. bovis P22 and the serum levels of selected protein immune biomarkers (IL-1beta, TNF-alpha, C3) were determined and analyzed as possible correlates of protection. Oral immunization with IV and SUB alone and in SUB + IV combination were effective for the control of tick infestations (E = 71-96% for R. decoloratus and 87-99% for R. appendiculatus) with highest E (higher than 95%) for SUB + IV. The results demonstrated that oral immunization with the SUB + IV formulation resulted in effective control of cattle tick infestations through the activation of multiple immune mechanisms. These results support the application of oral vaccine formulations with SUB + IV for the control of cattle infestations with Rhipicephalus species towards improving animal health.


Assuntos
Doenças dos Bovinos , Mycobacterium bovis , Rhipicephalus , Infestações por Carrapato , Vacinas , Animais , Bovinos , Doenças dos Bovinos/prevenção & controle , Temperatura Alta , Infestações por Carrapato/prevenção & controle , Infestações por Carrapato/veterinária
11.
Genet Resour Crop Evol ; 68(7): 2997-3010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720427

RESUMO

Most orphan crops have not been fully sequenced, hence we rely on genome sequences of related species to align markers to different chromosomes. This hinders their utilisation in plant population improvement programs. Utilising the advances in the science of sequencing technologies, the population structure, relatedness, and genetic diversity among accessions can be assessed quickly for better exploitation in forage breeding programs. Using DArTseq technology, we studied the genetic and structural variation in 65 Lablab purpureus (L.) Sweet conserved gene-bank accessions using 9320 DArTseq-based SNPs and 15,719 SilicoDart markers. These markers had a low discriminating ability with mean polymorphic information content (P.I.C.) of 0.14 with DArTseq-based SNPs and 0.13 with SilicoDart markers. However, the markers had a high mean call rate of 73% with DArTseq-based SNPs and 97% with SilicoDart markers. Analysis of molecular variance revealed a high within populations variance (99.4%), indicating a high gene exchange or low genetic differentiation (PhiPT = 0.0057) among the populations. Structure analysis showed three allelic pools in variable clusters of ΔK = 3 and 6. Phylogenetic tree of lablab accessions showed three main groups with variable membership coefficients. Most pairs of accessions (40.3%) had genetic distances between 0.10 and 0.15 for SilicoDart markers, while for DArTseq-based SNPs, (46.5%) had genetic distances between 0.20 and 0.25. Phylogenetic clustering and minimum spanning analysis divided the 65 accessions into three groups, irrespective of their origin. For the first time, this study produced high-density markers with good genom coverage. The utilisation of these accessions in a forage program will base on the information from molecular-based grouping. The outcomes uncovered the presence of noteworthy measure of variety in Uganda, CIAT and ILRI accessions, thus demonstrating an opportunity for further marker-trait-association studies. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10722-021-01171-y.

12.
Vaccines (Basel) ; 8(2)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570925

RESUMO

Cattle tick infestations and transmitted pathogens affect animal health, production and welfare with an impact on cattle industry in tropical and subtropical countries. Anti-tick vaccines constitute an effective and sustainable alternative to the traditional methods for the control of tick infestations. Subolesin (SUB)-based vaccines have shown efficacy for the control of multiple tick species, but several factors affect the development of new and more effective vaccines for the control of tick infestations. To address this challenge, herein we used a regional and host/tick species driven approach for vaccine design and implementation. The objective of the study was to develop SUB-based vaccines for the control of the most important tick species (Rhipicephalus appendiculatus, R. decoloratus and Amblyomma variegatum) affecting production of common cattle breeds (Bos indicus and B. indicus x B. taurus crossbred) in Uganda. In this way, we addressed the development of anti-tick vaccines as an intervention to prevent the economic losses caused by ticks and tick-borne diseases in the cattle industry in Uganda. The results showed the possibility of using SUB antigens for the control of multiple tick species in B. indicus and crossbred cattle and suggested the use of R. appendiculatus SUB to continue research on vaccine design and formulation for the control of cattle ticks in Uganda. Future directions would include quantum vaccinology approaches based on the characterization of the SUB protective epitopes, modeling of the vaccine E under Ugandan ecological and epidemiological conditions and optimization of vaccine formulation including the possibility of oral administration.

14.
Anim Nutr ; 2(4): 361-369, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29767044

RESUMO

The greatest limitation to utilization of maize stover by ruminants as a feed is the high concentration of lignin, which limits fibre digestibility. However, ruminants can effectively utilize maize stover if its nutritive value is improved using white rot fungal species. This study was designed to determine optimal bio-physical conditions for mycelial growth and select the most ideal fungal species and pre-treatment options for improving nutritive value of maize stover. Four popular edible Pleurotus fungal species (viz. Pleurotus florida, Pleurotus ostreatus, Pleurotus sajor caju and Pleurotus pulmonarius) were subjected to varying temperatures, pH levels, hydrogen peroxide (H2O2) concentration and illumination to establish the extent of mycelial growth rate. Inclusion of H2O2 was used to determine optimal levels for preservation and prevention of contamination from other indigenous microbiota. Effects of pre-treatment options on chemical composition and nutritive value of maize stover were also examined. Mycelial growth rate of Pleurotus species on potato dextrose agar (PDA) varied (P < 0.05) with temperature, pH level and H2O2 concentration following a quadratic trend. Optimal temperature, pH and H2O2 concentration for mycelial growth on PDA were 25 °C, 5 and 0.01 mL/L, respectively. Under the different bio-physical conditions, P. sajor caju had the highest mycelia density and growth rate. Chemical composition of solid-state fermented maize stover differed (P < 0.05) among the Pleurotus species. Maize stover fermented with P. sajor caju had the highest crude protein (CP) of 86.6 g/kg DM, in-vitro dry matter digestibility (IVDMD) of 731 g/kg DM, in-vitro organic matter digestibility (IVOMD) of 670.4 g/kg DM and metabolizable energy (ME) of 10.0 MJ/kg DM but with the lowest lignin (sa) of 50 g/kg DM. At 25 °C, P. sajor caju had the highest mycelial growth rate on PDA and highest lignin (sa) breakdown in the maize stover substrate. It was, therefore, selected as the most ideal fungal species for improving nutritive value of maize stover. Pre-treatment of maize stover with Lactobacillus plantarum and molasses under anaerobic condition for 7 days before inoculation with P. sajor caju resulted into a substrate with the highest (P < 0.05) CP (96.6 g/kg DM), IVDMD (752.3 g/kg DM), IVOMD (687.2 g/kg DM) and ME (10.2 MJ/kg DM). However, neutral detergent fiber exclusive of residual ash (NDFom) and lignin (sa) fractions decreased (P < 0.05) as a result of subjecting maize stover to pre-treatment with L. plantarum and molasses prior to fermentation with P. sajor caju. Therefore, pre-treatment of maize stover with L. plantarum and molasses for 7 days prior to fermentation with P. sajor caju for 14 days in darkness at 25 °C offered the greatest potential for breaking the lignin barrier.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA