RESUMO
BACKGROUND: Iron deficiency (ID) and malaria are common causes of ill-health and disability among children living in sub-Saharan Africa. Although iron is critical for the acquisition of humoral immunity, little is known about the effects of ID on antibody responses to Plasmodium falciparum malaria. METHODS: The study included 1794 Kenyan and Ugandan children aged 0-7 years. We measured biomarkers of iron and inflammation, and antibodies to P. falciparum antigens including apical merozoite antigen 1 (anti-AMA-1) and merozoite surface antigen 1 (anti-MSP-1) in cross-sectional and longitudinal studies. RESULTS: The overall prevalence of ID was 31%. ID was associated with lower anti-AMA-1 and anti-MSP-1 antibody levels in pooled analyses adjusted for age, sex, study site, inflammation, and P. falciparum parasitemia (adjusted mean difference on a log-transformed scale (ß) -0.46; 95 confidence interval [CI], -.66, -.25 Pâ <â .0001; ß -0.33; 95 CI, -.50, -.16 Pâ <â .0001, respectively). Additional covariates for malaria exposure index, previous malaria episodes, and time since last malaria episode were available for individual cohorts. Meta-analysis was used to allow for these adjustments giving ß -0.34; -0.52, -0.16 for anti-AMA-1 antibodies and ß -0.26; -0.41, -0.11 for anti-MSP-1 antibodies. Low transferrin saturation was similarly associated with reduced anti-AMA-1 antibody levels. Lower AMA-1 and MSP-1-specific antibody levels persisted over time in iron-deficient children. CONCLUSIONS: Reduced levels of P. falciparum-specific antibodies in iron-deficient children might reflect impaired acquisition of immunity to malaria and/or reduced malaria exposure. Strategies to prevent and treat ID may influence antibody responses to malaria for children living in sub-Saharan Africa.
Assuntos
Anemia Ferropriva , Malária Falciparum , Anemia Ferropriva/epidemiologia , Anticorpos Antiprotozoários , Antígenos de Protozoários , Criança , Estudos Transversais , Humanos , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Plasmodium falciparumRESUMO
Background: We investigated the poorly understood impact of declining malaria transmission on maintenance of antibodies to Plasmodium falciparum merozoite antigens and infected erythrocytes (IEs), including functional immunity. Methods: In a 3-year longitudinal cohort of 300 Kenyan children, antibodies to different AMA1 and MSP2 alleles of merozoites, IE surface antigens, and antibody functional activities were quantified. Results: Over a period in which malaria transmission declined markedly, AMA1 and MSP2 antibodies decreased substantially; estimated half-lives of antibody duration were 0.8 year and 1-3 years, respectively. However, 69%-74% of children maintained their seropositivity to AMA1 alleles and 42%-52% to MSP2 alleles. Levels and prevalence of antimerozoite antibodies were consistently associated with increasing age and concurrent parasitemia. Antibodies promoting opsonic phagocytosis of merozoites declined rapidly (half-life, 0.15 years). In contrast, complement-fixing antibodies to merozoites did not decline and antibodies to IE surface antigens expressing virulent phenotypes were much better maintained (half-life, 4-10 years). Conclusions: A decline in malaria transmission is associated with reduction in naturally acquired immunity. However, loss of immunity is not universal; some key functional responses and antibodies to IEs were better maintained and these may continue to provide some protection. Findings have implications for malaria surveillance and control measures and informing vaccine development.
Assuntos
Imunidade Humoral , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Plasmodium falciparum/imunologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários , Criança , Pré-Escolar , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Merozoítos/imunologia , Fatores de TempoRESUMO
BACKGROUND: Polymorphism in antigens is a common mechanism for immune evasion used by many important pathogens, and presents major challenges in vaccine development. In malaria, many key immune targets and vaccine candidates show substantial polymorphism. However, knowledge on antigenic diversity of key antigens, the impact of polymorphism on potential vaccine escape, and how sequence polymorphism relates to antigenic differences is very limited, yet crucial for vaccine development. Plasmodium falciparum apical membrane antigen 1 (AMA1) is an important target of naturally-acquired antibodies in malaria immunity and a leading vaccine candidate. However, AMA1 has extensive allelic diversity with more than 60 polymorphic amino acid residues and more than 200 haplotypes in a single population. Therefore, AMA1 serves as an excellent model to assess antigenic diversity in malaria vaccine antigens and the feasibility of multi-allele vaccine approaches. While most previous research has focused on sequence diversity and antibody responses in laboratory animals, little has been done on the cross-reactivity of human antibodies. METHODS: We aimed to determine the extent of antigenic diversity of AMA1, defined by reactivity with human antibodies, and to aid the identification of specific alleles for potential inclusion in a multi-allele vaccine. We developed an approach using a multiple-antigen-competition enzyme-linked immunosorbent assay (ELISA) to examine cross-reactivity of naturally-acquired antibodies in Papua New Guinea and Kenya, and related this to differences in AMA1 sequence. RESULTS: We found that adults had greater cross-reactivity of antibodies than children, although the patterns of cross-reactivity to alleles were the same. Patterns of antibody cross-reactivity were very similar between populations (Papua New Guinea and Kenya), and over time. Further, our results show that antigenic diversity of AMA1 alleles is surprisingly restricted, despite extensive sequence polymorphism. Our findings suggest that a combination of three different alleles, if selected appropriately, may be sufficient to cover the majority of antigenic diversity in polymorphic AMA1 antigens. Antigenic properties were not strongly related to existing haplotype groupings based on sequence analysis. CONCLUSIONS: Antigenic diversity of AMA1 is limited and a vaccine including a small number of alleles might be sufficient for coverage against naturally-circulating strains, supporting a multi-allele approach for developing polymorphic antigens as malaria vaccines.
Assuntos
Antígenos de Protozoários/imunologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Alelos , Anticorpos Antiprotozoários/imunologia , Variação Antigênica , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Humanos , Quênia , Vacinas Antimaláricas/genética , Pessoa de Meia-Idade , Papua Nova Guiné , Plasmodium falciparum/genética , Polimorfismo GenéticoRESUMO
BACKGROUND: Countries aiming for malaria elimination require a detailed understanding of the current intensity of malaria transmission within their national borders. National household sample surveys are now being used to define infection prevalence but these are less efficient in areas of exceptionally low endemicity. Here we present the results of a national malaria indicator survey in the Republic of Djibouti, the first in sub-Saharan Africa to combine parasitological and serological markers of malaria, to evaluate the extent of transmission in the country and explore the potential for elimination. METHODS: A national cross-sectional household survey was undertaken from December 2008 to January 2009. A finger prick blood sample was taken from randomly selected participants of all ages to examine for parasitaemia using rapid diagnostic tests (RDTs) and confirmed using Polymerase Chain Reaction (PCR). Blood spots were also collected on filter paper and subsequently used to evaluate the presence of serological markers (combined AMA-1 and MSP-119) of Plasmodium falciparum exposure. Multivariate regression analysis was used to determine the risk factors for P. falciparum infection and/or exposure. The Getis-Ord G-statistic was used to assess spatial heterogeneity of combined infections and serological markers. RESULTS: A total of 7151 individuals were tested using RDTs of which only 42 (0.5%) were positive for P. falciparum infections and confirmed by PCR. Filter paper blood spots were collected for 5605 individuals. Of these 4769 showed concordant optical density results and were retained in subsequent analysis. Overall P. falciparum sero-prevalence was 9.9% (517/4769) for all ages; 6.9% (46/649) in children under the age of five years; and 14.2% (76/510) in the oldest age group (≥50 years). The combined infection and/or antibody prevalence was 10.5% (550/4769) and varied from 8.1% to 14.1% but overall regional differences were not statistically significant (χ2=33.98, p=0.3144). Increasing age (p<0.001) and decreasing household wealth status (p<0.001) were significantly associated with increasing combined P. falciparum infection and/or antibody prevalence. Significant P. falciparum hot spots were observed in Dikhil region. CONCLUSION: Malaria transmission in the Republic of Djibouti is very low across all regions with evidence of micro-epidemiological heterogeneity and limited recent transmission. It would seem that the Republic of Djibouti has a biologically feasible set of pre-conditions for elimination, however, the operational feasibility and the potential risks to elimination posed by P. vivax and human population movement across the sub-region remain to be properly established.
Assuntos
Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Criança , Pré-Escolar , Estudos Transversais , Djibuti/epidemiologia , Feminino , Humanos , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Plasmodium falciparum/isolamento & purificação , Prevalência , Adulto JovemRESUMO
Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance.
Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Imunidade , Malária/imunologia , Malária/parasitologia , Merozoítos/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos/imunologia , Estudos de Coortes , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia/imunologia , Parasitemia/parasitologia , Adulto JovemRESUMO
Both iron deficiency (ID) and malaria are common among African children. Studies show that the iron-regulatory hormone hepcidin is induced by malaria, but few studies have investigated this relationship longitudinally. We measured hepcidin concentrations, markers of iron status, and antibodies to malaria antigens during two cross-sectional surveys within a cohort of 324 Kenyan children ≤ 8 years old who were under intensive surveillance for malaria and other febrile illnesses. Hepcidin concentrations were the highest in the youngest, and female infants, declined rapidly in infancy and more gradually thereafter. Asymptomatic malaria and malaria antibody titres were positively associated with hepcidin concentrations. Recent episodes of febrile malaria were associated with high hepcidin concentrations that fell over time. Hepcidin concentrations were not associated with the subsequent risk of either malaria or other febrile illnesses. Given that iron absorption is impaired by hepcidin, our data suggest that asymptomatic and febrile malaria contribute to the high burden of ID seen in African children. Further, the effectiveness of iron supplementation may be sub-optimal in the presence of asymptomatic malaria. Thus, strategies to prevent and eliminate malaria may have the added benefit of addressing an important cause of ID for African children.
Assuntos
Hepcidinas/sangue , Malária/sangue , Malária/epidemiologia , Fatores Etários , Anemia Ferropriva/epidemiologia , Anemia Ferropriva/etiologia , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Biomarcadores , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Lactente , Ferro/metabolismo , Estimativa de Kaplan-Meier , Quênia/epidemiologia , Malária/complicações , Malária/imunologia , Malária/parasitologia , Malária Falciparum/sangue , Malária Falciparum/complicações , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Masculino , Vigilância da População , Modelos de Riscos Proporcionais , Risco , Sensibilidade e Especificidade , Talassemia alfa/complicações , Talassemia alfa/epidemiologiaRESUMO
BACKGROUND: Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1. METHODOLOGY/FINDINGS: We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies. CONCLUSIONS/SIGNIFICANCE: Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1.
Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Epitopos/imunologia , Malária/imunologia , Proteínas de Membrana/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Lactente , Malária/prevenção & controle , Pessoa de Meia-Idade , Adulto JovemRESUMO
BACKGROUND: Antibodies that inhibit the growth of blood-stage Plasmodium falciparum may play an important role in acquired and vaccine-induced immunity in humans. However, the acquisition and activity of these antibodies is not well understood. METHODS: We tested dialysed serum and purified immunoglobulins from Kenyan children and adults for inhibition of P. falciparum blood-stage growth in vitro using different parasite lines. Serum antibodies were measured by ELISA to blood-stage parasite antigens, extracted from P. falciparum schizonts, and to recombinant merozoite surface protein 1 (42 kDa C-terminal fragment, MSP1-42). RESULTS: Antibodies to blood-stage antigens present in schizont protein extract and to recombinant MSP1-42 significantly increased with age and were highly correlated. In contrast, growth-inhibitory activity was not strongly associated with age and tended to decline marginally with increasing age and exposure, with young children demonstrating the highest inhibitory activity. Comparison of growth-inhibitory activity among samples collected from the same population at different time points suggested that malaria transmission intensity influenced the level of growth-inhibitory antibodies. Antibodies to recombinant MSP1-42 were not associated with growth inhibition and high immunoglobulin G levels were poorly predictive of inhibitory activity. The level of inhibitory activity against different isolates varied. CONCLUSIONS: Children can acquire growth-inhibitory antibodies at a young age, but once they are acquired they do not appear to be boosted by on-going exposure. Inhibitory antibodies may play a role in protection from early childhood malaria.