Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
FASEB J ; 38(2): e23442, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38275103

RESUMO

The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.


Assuntos
Secretases da Proteína Precursora do Amiloide , Lipoilação , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas de Membrana/metabolismo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Precursor de Proteína beta-Amiloide/metabolismo
2.
Protein Expr Purif ; 215: 106407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38000778

RESUMO

Cleavage of the transmembrane domain (TMD) of amyloid-ß precursor protein (APP) by γ-secretase, an intramembrane aspartyl protease, generates Aß peptides of various lengths that form plaques in the brains of Alzheimer's disease patients. Although the debate has not been finally resolved whether these plaques trigger the onset of Alzheimer's or are side products, disease-related mutations suggest their implication in the etiology of the dementia. These occur both in presenilin, the catalytic subunit of γ-secretase, and in the TMD of APP. Despite two seminal cryo-electron microscopy structures that show the complex of γ-secretase with its substrates APP and Notch, the mechanism of γ-secretase is not yet fully understood. Especially on which basis it selects its substrates is still an enigma. The presenilin homolog PSH from the archaeon Methanoculleus marisnigri JR1 (MCMJR1) is catalytically active without accessory proteins in contrast to γ-secretase making it an excellent model for studies of the basic cleavage process. We here focused on the cell-free expression of PSH screening a range of conditions. Cleavage assays to verify the activity show that not only the yield, but mainly the activity of the protease depends on the careful selection of expression conditions. Optimal results were found for a cell-free expression at relatively low temperature, 20 °C, employing cell lysates prepared from E. coli Rosetta cells. To speed up protein preparation for immediate functional assays, a crude purification protocol was developed. This allows to produce ready-made PSH in a fast and efficient manner in less than two days.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Presenilinas/química , Presenilinas/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides
3.
J Biol Chem ; 298(9): 102321, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921890

RESUMO

The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential-dependent oligomeric switch.


Assuntos
Homeostase , Metaloproteases , Mitocôndrias , Proteínas Mitocondriais , Fosfoproteínas Fosfatases , Proteólise , Células HeLa , Humanos , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Peptídeos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Quinases/metabolismo
4.
Molecules ; 26(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067126

RESUMO

Surfactants, such as glycolipids, are specialty compounds that can be encountered daily in cleaning agents, pharmaceuticals or even in food. Due to their wide range of applications and, more notably, their presence in hygiene products, the demand is continuously increasing worldwide. The established chemical synthesis of glycolipids presents several disadvantages, such as lack of specificity and selectivity. Moreover, the solubility of polyols, such as sugars or sugar alcohols, in organic solvents is rather low. The enzymatic synthesis of these compounds is, however, possible in nearly water-free media using inexpensive and renewable building blocks. Using lipases, ester formation can be achieved under mild conditions. We propose, herein, a "2-in-1" system that overcomes solubility problems, as a Deep Eutectic System (DES) made of sorbitol and choline chloride replaces either a purely organic or aqueous medium. For the first time, 16 commercially available lipase formulations were compared, and the factors affecting the conversion were investigated to optimize this process, owing to a newly developed High-Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) method for quantification. Thus, using 50 g/L of lipase formulation Novozym 435® at 50 °C, the optimized synthesis of sorbitol laurate (SL) allowed to achieve 28% molar conversion of 0.5 M of vinyl laurate to its sugar alcohol monoester when the DES contained 5 wt.% water. After 48h, the de novo synthesized glycolipid was separated from the media by liquid-liquid extraction, purified by flash-chromatography and characterized thoroughly by one- and two-dimensional Nuclear Magnetic Resonance (NMR) experiments combined to Mass Spectrometry (MS). In completion, we provide initial proof of scalability for this process. Using a 2.5 L stirred tank reactor (STR) allowed a batch production reaching 25 g/L in a highly viscous two-phase system.

5.
Molecules ; 26(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361700

RESUMO

Outstanding affinity and specificity are the main characteristics of peptides, rendering them interesting compounds for basic and medicinal research. However, their biological applicability is limited due to fast proteolytic degradation. The use of mimetic peptoids overcomes this disadvantage, though they lack stereochemical information at the α-carbon. Hybrids composed of amino acids and peptoid monomers combine the unique properties of both parent classes. Rigidification of the backbone increases the affinity towards various targets. However, only little is known about the spatial structure of such constrained hybrids. The determination of the three-dimensional structure is a key step for the identification of new targets as well as the rational design of bioactive compounds. Herein, we report the synthesis and the structural elucidation of novel tetrameric macrocycles. Measurements were taken in solid and solution states with the help of X-ray scattering and NMR spectroscopy. The investigations made will help to find diverse applications for this new, promising compound class.


Assuntos
Aminoácidos/química , Compostos Macrocíclicos/química , Peptídeos/química , Peptidomiméticos/química , Peptoides/química , Química Farmacêutica/métodos , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Compostos Macrocíclicos/síntese química , Modelos Químicos , Peptídeos/síntese química , Peptidomiméticos/síntese química , Peptoides/síntese química , Estabilidade Proteica
6.
Phys Chem Chem Phys ; 22(30): 17375-17384, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32705098

RESUMO

The recently developed MDOC (Molecular Dynamics with Orientational Constraints) simulation is applied for the first time to a fully flexible molecule. MDOC simulations aim to single out the naturally existing configuration of molecules and to elucidate conformer populations. The performance of the method was first demonstrated on a well-studied test case, the five-membered ring lactone (α-methylene-γ-butyrolactone). In the case of sagittamide A, one-bond 1H-13C residual dipolar couplings (RDC) are used as orientational constraints that reorient the molecule or parts of it. In addition, NOE distances and 3J scalar couplings are used as constraints. Five possible configurations of sagittamide A (labelled a to e) are considered. One experimental RDC value per flexible unit was available and this was not sufficient to single out one valid configuration. The problem could be solved by including NOE distances as well as 3J couplings as complementary constraints into the MDOC simulations. In accordance with former investigations, we confirmed the configuration a for the natural product. A detailed analysis of conformers of the central chain of 6 chiral carbon atoms could be given by inspecting the MDOC trajectory. The relative abundance of these conformers is crucial in fulfilling all three sets of constraints.

7.
Int J Mol Sci ; 21(4)2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054020

RESUMO

Acute kidney injury (AKI) in critically ill children and adults is associated with significant short- and long-term morbidity and mortality. As serum creatinine- and urine output-based definitions of AKI have relevant limitations, there is a persistent need for better diagnostics of AKI. Nuclear magnetic resonance (NMR) spectroscopy allows for analysis of metabolic profiles without extensive sample manipulations. In the study reported here, we examined the diagnostic accuracy of NMR urine metabolite patterns for the diagnosis of neonatal and pediatric AKI according to the Kidney Disease: Improving Global Outcomes (KDIGO) definition. A cohort of 65 neonatal and pediatric patients (0-18 years) with established AKI of heterogeneous etiology was compared to both a group of apparently healthy children (n = 53) and a group of critically ill children without AKI (n = 31). Multivariate analysis identified a panel of four metabolites that allowed diagnosis of AKI with an area under the receiver operating characteristics curve (AUC-ROC) of 0.95 (95% confidence interval 0.86-1.00). Especially urinary citrate levels were significantly reduced whereas leucine and valine levels were elevated. Metabolomic differentiation of AKI causes appeared promising but these results need to be validated in larger studies. In conclusion, this study shows that NMR spectroscopy yields high diagnostic accuracy for AKI in pediatric patients.


Assuntos
Injúria Renal Aguda/urina , Injúria Renal Aguda/diagnóstico , Adolescente , Biomarcadores/urina , Criança , Pré-Escolar , Ácido Cítrico/urina , Feminino , Humanos , Lactente , Recém-Nascido , Leucina/urina , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Projetos Piloto , Urinálise , Valina/urina
8.
Biophys J ; 116(11): 2103-2120, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31130234

RESUMO

Intramembrane cleavage of the ß-amyloid precursor protein C99 substrate by γ-secretase is implicated in Alzheimer's disease pathogenesis. Biophysical data have suggested that the N-terminal part of the C99 transmembrane domain (TMD) is separated from the C-terminal cleavage domain by a di-glycine hinge. Because the flexibility of this hinge might be critical for γ-secretase cleavage, we mutated one of the glycine residues, G38, to a helix-stabilizing leucine and to a helix-distorting proline. Both mutants impaired γ-secretase cleavage and also altered its cleavage specificity. Circular dichroism, NMR, and backbone amide hydrogen/deuterium exchange measurements as well as molecular dynamics simulations showed that the mutations distinctly altered the intrinsic structural and dynamical properties of the substrate TMD. Although helix destabilization and/or unfolding was not observed at the initial ε-cleavage sites of C99, subtle changes in hinge flexibility were identified that substantially affected helix bending and twisting motions in the entire TMD. These resulted in altered orientation of the distal cleavage domain relative to the N-terminal TMD part. Our data suggest that both enhancing and reducing local helix flexibility of the di-glycine hinge may decrease the occurrence of enzyme-substrate complex conformations required for normal catalysis and that hinge mobility can thus be conducive for productive substrate-enzyme interactions.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Proteólise , Sequência de Aminoácidos , Precursor de Proteína beta-Amiloide/genética , Mutação , Domínios Proteicos
9.
PLoS Pathog ; 10(2): e1003973, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24586172

RESUMO

E(rns) is an essential virion glycoprotein with RNase activity that suppresses host cellular innate immune responses upon being partially secreted from the infected cells. Its unusual C-terminus plays multiple roles, as the amphiphilic helix acts as a membrane anchor, as a signal peptidase cleavage site, and as a retention/secretion signal. We analyzed the structure and membrane binding properties of this sequence to gain a better understanding of the underlying mechanisms. CD spectroscopy in different setups, as well as Monte Carlo and molecular dynamics simulations confirmed the helical folding and showed that the helix is accommodated in the amphiphilic region of the lipid bilayer with a slight tilt rather than lying parallel to the surface. This model was confirmed by NMR analyses that also identified a central stretch of 15 residues within the helix that is fully shielded from the aqueous layer, which is C-terminally followed by a putative hairpin structure. These findings explain the strong membrane binding of the protein and provide clues to establishing the E(rns) membrane contact, processing and secretion.


Assuntos
Pestivirus/química , Proteínas do Envelope Viral/química , Sequência de Aminoácidos , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína
10.
J Biol Chem ; 289(13): 8839-51, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24523409

RESUMO

The androgen receptor (AR) is a ligand-activated transcription factor that is essential for prostate cancer development. It is activated by androgens through its ligand-binding domain (LBD), which consists predominantly of 11 α-helices. Upon ligand binding, the last helix is reorganized to an agonist conformation termed activator function-2 (AF-2) for coactivator binding. Several coactivators bind to the AF-2 pocket through conserved LXXLL or FXXLF sequences to enhance the activity of the receptor. Recently, a small compound-binding surface adjacent to AF-2 has been identified as an allosteric modulator of the AF-2 activity and is termed binding function-3 (BF-3). However, the role of BF-3 in vivo is currently unknown, and little is understood about what proteins can bind to it. Here we demonstrate that a duplicated GARRPR motif at the N terminus of the cochaperone Bag-1L functions through the BF-3 pocket. These findings are supported by the fact that a selective BF-3 inhibitor or mutations within the BF-3 pocket abolish the interaction between the GARRPR motif(s) and the BF-3. Conversely, amino acid exchanges in the two GARRPR motifs of Bag-1L can impair the interaction between Bag-1L and AR without altering the ability of Bag-1L to bind to chromatin. Furthermore, the mutant Bag-1L increases androgen-dependent activation of a subset of AR targets in a genome-wide transcriptome analysis, demonstrating a repressive function of the GARRPR/BF-3 interaction. We have therefore identified GARRPR as a novel BF-3 regulatory sequence important for fine-tuning the activity of the AR.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Receptores Androgênicos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Linhagem Celular , Proteínas de Ligação a DNA/genética , Humanos , Mutação , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores Androgênicos/química , Receptores Androgênicos/genética , Sequências Repetitivas de Aminoácidos , Fatores de Transcrição/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA