Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 892: 163774, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37230352

RESUMO

Avirulent halotolerant plant growth-promoting rhizobacteria (HPGPR) located on the roots' periphery can reduce abiotic stressors (such as salinity and drought), enhance plant productivity. Salinity poses a significant challenge for growing agricultural products, like rice, in the coastal regions. It is crucial to enhance production because of limited arable land and the high growth rate of the population. This study targeted to identify HPGPR from legume root nodules and assessed their effects on rice plants experiencing salt stress in coastal regions of Bangladesh. Based on the culture morphology, biochemical, salt, pH, and temperature tolerance traits, sixteen bacteria were isolated from the root nodules of leguminous plants (Common bean, Yardlong bean, Dhaincha, and Shameplant). All the bacterial strains can tolerate 3 % salt concentration, and capable to survive at the highest 45 °C temperature and pH 11 (without isolate 1). Three preeminent bacteria, Agrobacterium tumefaciens (B1), Bacillus subtilis (B2), and Lysinibacillus fusiformis (B3) were specified through morpho-biochemical and molecular (16S rRNA gene sequence) exploration for inoculation. To assess the plant growth-promoting activities, germination tests are applied where bacterial inoculation increased germination in saline and non-saline conditions. Control group (C) showed 89.47 % and bacterial treated groups (C + B1, C + B2, and C + B3) 95 %, 90 %, and 75 % germination after 2 days of inoculation. In (1 % NaCl) saline condition control group revealed 40 % whereas three groups with bacteria showed 60 %, 40 %, and 70 % germination after 3 days, which increased 70 %, 90 %, 85 %, and 95 % respectively after 4 days of inoculation. The HPGPR significantly improved plant development metrics such as root length, shoot length, fresh and arid biomass yield, chlorophyll content, etc. Our results suggest that the salt-resistant bacteria (Halotolerant) have a great potential role in recuperating plant growth and would be cost-effective as a bio-inoculant in saline conditions to be used as a prospective bio-fertilizer for rice production. These findings indicate that the HPGPR has a substantially promising function in reviving plant development in an eco-friendly manner.


Assuntos
Oryza , Plântula , Oryza/genética , RNA Ribossômico 16S/genética , Estudos Prospectivos , Plantas Tolerantes a Sal/genética , Estresse Salino , Bactérias , Salinidade , Raízes de Plantas/microbiologia
2.
Groundw Sustain Dev ; 21: 100932, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36945723

RESUMO

The ongoing COVID-19 contagious disease caused by SARS-CoV-2 has disrupted global public health, businesses, and economies due to widespread infection, with 676.41 million confirmed cases and 6.77 million deaths in 231 countries as of February 07, 2023. To control the rapid spread of SARS-CoV-2, it is crucial to determine the potential determinants such as meteorological factors and their roles. This study examines how COVID-19 cases and deaths changed over time while assessing meteorological characteristics that could impact these disparities from the onset of the pandemic. We used data spanning two years across all eight administrative divisions, this is the first of its kind--showing a connection between meteorological conditions, vaccination, and COVID-19 incidences in Bangladesh. We further employed several techniques including Simple Exponential Smoothing (SES), Auto-Regressive Integrated Moving Average (ARIMA), Auto-Regressive Integrated Moving Average with explanatory variables (ARIMAX), and Automatic forecasting time-series model (Prophet). We further analyzed the effects of COVID-19 vaccination on daily cases and deaths. Data on COVID-19 cases collected include eight administrative divisions of Bangladesh spanning March 8, 2020, to January 31, 2023, from available online servers. The meteorological data include rainfall (mm), relative humidity (%), average temperature (°C), surface pressure (kPa), dew point (°C), and maximum wind speed (m/s). The observed wind speed and surface pressure show a significant negative impact on COVID-19 cases (-0.89, 95% confidence interval (CI): 1.62 to -0.21) and (-1.31, 95%CI: 2.32 to -0.29), respectively. Similarly, the observed wind speed and surface pressure show a significant negative impact on COVID-19 deaths (-0.87, 95% CI: 1.54 to -0.21) and (-3.11, 95%CI: 4.44 to -1.25), respectively. The impact of meteorological factors is almost similar when vaccination information is included in the model. However, the impact of vaccination in both cases and deaths model is significantly negative (for cases: 1.19, 95%CI: 2.35 to -0.38 and for deaths: 1.55, 95%CI: 2.88 to -0.43). Accordingly, vaccination effectively reduces the number of new COVID-19 cases and fatalities in Bangladesh. Thus, these results could assist future researchers and policymakers in the assessment of pandemics, by making thorough efforts that account for COVID-19 vaccinations and meteorological conditions.

4.
Sci Total Environ ; 858(Pt 3): 159350, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265620

RESUMO

Wastewater based epidemiology (WBE) is an important tool to fight against COVID-19 as it provides insights into the health status of the targeted population from a small single house to a large municipality in a cost-effective, rapid, and non-invasive way. The implementation of wastewater based surveillance (WBS) could reduce the burden on the public health system, management of pandemics, help to make informed decisions, and protect public health. In this study, a house with COVID-19 patients was targeted for monitoring the prevalence of SARS-CoV-2 genetic markers in wastewater samples (WS) with clinical specimens (CS) for a period of 30 days. RT-qPCR technique was employed to target nonstructural (ORF1ab) and structural-nucleocapsid (N) protein genes of SARS-CoV-2, according to a validated experimental protocol. Physiological, environmental, and biological parameters were also measured following the American Public Health Association (APHA) standard protocols. SARS-CoV-2 viral shedding in wastewater peaked when the highest number of COVID-19 cases were clinically diagnosed. Throughout the study period, 7450 to 23,000 gene copies/1000 mL were detected, where we identified 47 % (57/120) positive samples from WS and 35 % (128/360) from CS. When the COVID-19 patient number was the lowest (2), the highest CT value (39.4; i.e., lowest copy number) was identified from WS. On the other hand, when the COVID-19 patients were the highest (6), the lowest CT value (25.2 i.e., highest copy numbers) was obtained from WS. An advance signal of increased SARS-CoV-2 viral load from the COVID-19 patient was found in WS earlier than in the CS. Using customized primer sets in a traditional PCR approach, we confirmed that all SARS-CoV-2 variants identified in both CS and WS were Delta variants (B.1.617.2). To our knowledge, this is the first follow-up study to determine a temporal relationship between COVID-19 patients and their discharge of SARS-CoV-2 RNA genetic markers in wastewater from a single house including all family members for clinical sampling from a developing country (Bangladesh), where a proper sewage system is lacking. The salient findings of the study indicate that monitoring the genetic markers of the SARS-CoV-2 virus in wastewater could identify COVID-19 cases, which reduces the burden on the public health system during COVID-19 pandemics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Seguimentos , Águas Residuárias , Marcadores Genéticos , RNA Viral
5.
Front Public Health ; 10: 985445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36530721

RESUMO

In developing countries, acute respiratory infections (ARIs) cause a significant number of deaths among children. According to Bangladesh Demographic and Health Survey (BDHS), about 25% of the deaths in children under-five years are caused by ARI in Bangladesh every year. Low-income families frequently rely on wood, coal, and animal excrement for cooking. However, it is unclear whether using alternative fuels offers a health benefit over solid fuels. To clear this doubt, we conducted a study to investigate the effects of fuel usage on ARI in children. In this study, we used the latest BDHS 2017-18 survey data collected by the Government of Bangladesh (GoB) and estimated the effects of fuel use on ARI by constructing multivariable logistic regression models. From the analysis, we found that the crude (the only type of fuel in the model) odds ratio (OR) for ARI is 1.69 [95% confidence interval (CI): 1.06-2.71]. This suggests that children in families using contaminated fuels are 69.3% more likely to experience an ARI episode than children in households using clean fuels. After adjusting for cooking fuel, type of roof material, child's age (months), and sex of the child-the effect of solid fuels is similar to the adjusted odds ratio (AOR) for ARI (OR: 1.69, 95% CI: 1.05-2.72). This implies that an ARI occurrence is 69.2% more likely when compared to the effect of clean fuel. This study found a statistically significant association between solid fuel consumption and the occurrence of ARI in children in households. The correlation between indoor air pollution and clinical parameters of ARI requires further investigation. Our findings will also help other researchers and policymakers to take comprehensive actions by considering fuel type as a risk factor as well as taking proper steps to solve this issue.


Assuntos
Poluição do Ar em Ambientes Fechados , Infecções Respiratórias , Humanos , Bangladesh/epidemiologia , Poluição do Ar em Ambientes Fechados/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Culinária , Infecções Respiratórias/epidemiologia , Características da Família
6.
Transbound Emerg Dis ; 67(2): 956-966, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31765042

RESUMO

Group A rotavirus (RVA) is an important cause of diarrhoea in people, especially children, and animals globally. Due to the segmented nature of the RVA genome, animal RVA strains have the potential to adapt to the human host through reassortment with other co-infecting human viruses. Macaques share food and habitat with people, resulting in close interaction between these two species. This study aimed to detect and characterize RVA in rhesus macaques (Macaca mulatta) in Bangladesh. Faecal samples (N = 454) were collected from apparently healthy rhesus macaques from nine different sites in Bangladesh between February and March 2013. The samples were tested by one-step, real-time, reverse transcriptase-polymerase chain reaction (PCR). Four percent of samples (n = 20; 95% CI 2.7%-6.7%) were positive for RVA. RVA positive samples were further characterized by nucleotide sequence analysis of two structural protein gene fragments, VP4 (P genotype) and VP7 (G genotype). G3, G10, P[3] and P[15] genotypes were identified and were associated as G3P[3], G3P[15] and G10P[15]. The phylogenetic relationship between macaque RVA strains from this study and previously reported human strains indicates possible transmission between humans and macaques in Bangladesh. To our knowledge, this is the first report of detection and characterization of rotaviruses in rhesus macaques in Bangladesh. These data will not only aid in identifying viral sharing between macaques, human and other animals, but will also improve the development of mitigation measures for the prevention of future rotavirus outbreaks.


Assuntos
Diarreia/virologia , Macaca mulatta/virologia , Infecções por Rotavirus/veterinária , Rotavirus/genética , Animais , Animais Selvagens , Bangladesh/epidemiologia , Fezes/virologia , Feminino , Genótipo , Geografia , Humanos , Masculino , Filogenia , Rotavirus/isolamento & purificação , Infecções por Rotavirus/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA