Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(20): 5467-5474, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706864

RESUMO

A broad range of imaging and sensing technologies in the infrared require large field-of-view (FoV) operation. To achieve this, traditional refractive systems often employ multiple elements to compensate for aberrations, which leads to excess size, weight, and cost. For many applications, including night vision eye-wear, air-borne surveillance, and autonomous navigation for unmanned aerial vehicles, size and weight are highly constrained. Sub-wavelength diffractive optics, also known as meta-optics, can dramatically reduce the size, weight, and cost of these imaging systems, as meta-optics are significantly thinner and lighter than traditional refractive lenses. Here, we demonstrate 80° FoV thermal imaging in the long-wavelength infrared regime (8-12 µm) using an all-silicon meta-optic with an entrance aperture and lens focal length of 1 cm.

2.
Nat Commun ; 15(1): 1662, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395983

RESUMO

Subwavelength diffractive optics known as meta-optics have demonstrated the potential to significantly miniaturize imaging systems. However, despite impressive demonstrations, most meta-optical imaging systems suffer from strong chromatic aberrations, limiting their utilities. Here, we employ inverse-design to create broadband meta-optics operating in the long-wave infrared (LWIR) regime (8-12 µm). Via a deep-learning assisted multi-scale differentiable framework that links meta-atoms to the phase, we maximize the wavelength-averaged volume under the modulation transfer function (MTF) surface of the meta-optics. Our design framework merges local phase-engineering via meta-atoms and global engineering of the scatterer within a single pipeline. We corroborate our design by fabricating and experimentally characterizing all-silicon LWIR meta-optics. Our engineered meta-optic is complemented by a simple computational backend that dramatically improves the quality of the captured image. We experimentally demonstrate a six-fold improvement of the wavelength-averaged Strehl ratio over the traditional hyperboloid metalens for broadband imaging.

3.
Sci Rep ; 9(1): 17670, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776392

RESUMO

We propose and demonstrate a new imaging technique to noninvasively see through scattering layers with the aid of a spatial light modulator (SLM). A relay system projects the incoherent light pattern emitting from the scattering layer onto the SLM. Two coded phase masks are displayed, one after another, on the SLM to modulate the projected scattered field and the two corresponding intensity patterns are recorded by a digital camera. The above procedure helps to achieve two goals. Firstly, since the coded phase masks are digitally synthesized, the point spread function of the imaging system can be engineered such that the image retrieval becomes more reliable. Secondly, the two recorded intensity patterns are subtracted one from the other and by that the background noise of the recovered image is minimized. The above two advantages along with a modified phase retrieval algorithm enable a relatively easier and accurate convergence to the image of the covered object.

4.
Sci Rep ; 8(1): 10517, 2018 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-30002399

RESUMO

Scattering media have always posed obstacles for imaging through them. In this study, we propose a single exposure, spatially incoherent and interferenceless method capable of imaging multi-plane objects through scattering media using only a single lens and a digital camera. A point object and a resolution chart are precisely placed at the same axial location, and light scattered from them is focused onto an image sensor using a spherical lens. For both cases, intensity patterns are recorded under identical conditions using only a single camera shot. The final image is obtained by an adaptive non-linear cross-correlation between the response functions of the point object and of the resolution chart. The clear and sharp reconstructed image demonstrates the validity of the method.

5.
Sci Rep ; 8(1): 1134, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348514

RESUMO

Imaging through a scattering medium is a challenging task. We propose and demonstrate an interferenceless incoherent opto-digital technique for 3D imaging through a scatterer with a single lens and a digital camera. The light diffracted from a point object is modulated by a scattering mask. The modulated wavefront is projected on an image sensor using a spherical lens and the impulse response is recorded. An object is placed at the same axial location as the point object and another intensity pattern is recorded with identical experimental conditions and with the same scattering mask. The image of the object is reconstructed by a cross-correlation between a reconstructing function and the object hologram. For 3D imaging, a library of reconstructing functions are created corresponding to different axial locations. The different planes of the object are reconstructed by a cross-correlation of the object hologram with the corresponding reconstructing functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA