Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
J Cell Sci ; 136(16)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519149

RESUMO

Accurate genome segregation in mitosis requires that all chromosomes are bioriented on the spindle. Cells monitor biorientation by sensing tension across sister centromeres. Chromosomes that are not bioriented have low centromere tension, which allows Aurora B (yeast Ipl1) to perform error correction that locally loosens kinetochore-microtubule attachments to allow detachment of microtubules and fresh attempts at achieving biorientation. However, it is not known whether low tension recruits Aurora B to centromeres or, alternatively, whether low tension directly activates Aurora B already localized at centromeres. In this work, we experimentally induced low tension in metaphase Saccharomyces cerevisiae yeast cells, then monitored Ipl1 localization. We find low tension recruits Ipl1 to centromeres. Furthermore, low tension-induced Ipl1 recruitment depended on Bub1, which is known to provide a binding site for Ipl1. In contrast, Top2, which can also recruit Ipl1 to centromeres, was not required. Our results demonstrate cells are sensitive to low tension at centromeres and respond by actively recruiting Ip1l for error correction.


Assuntos
Cinetocoros , Saccharomyces cerevisiae , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Centrômero/metabolismo , Segregação de Cromossomos , Proteínas Fúngicas/metabolismo , Cinetocoros/metabolismo , Metáfase , Microtúbulos/metabolismo , Mitose , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
2.
Mol Cell Proteomics ; 22(2): 100486, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549589

RESUMO

Spatial separation of ions in the gas phase, providing information about their size as collisional cross-sections, can readily be achieved through ion mobility. The timsTOF Pro (Bruker Daltonics) series combines a trapped ion mobility device with a quadrupole, collision cell, and a time-of-flight analyzer to enable the analysis of ions at great speed. Here, we show that the timsTOF Pro is capable of physically separating N-glycopeptides from nonmodified peptides and producing high-quality fragmentation spectra, both beneficial for glycoproteomics analyses of complex samples. The glycan moieties enlarge the size of glycopeptides compared with nonmodified peptides, yielding a clear cluster in the mobilogram that, next to increased dynamic range from the physical separation of glycopeptides and nonmodified peptides, can be used to make an effective selection filter for directing the mass spectrometer to analytes of interest. We designed an approach where we (1) focused on a region of interest in the ion mobilogram and (2) applied stepped collision energies to obtain informative glycopeptide tandem mass spectra on the timsTOF Pro:glyco-polygon-stepped collision energy-parallel accumulation serial fragmentation. This method was applied to selected glycoproteins, human plasma- and neutrophil-derived glycopeptides. We show that the achieved physical separation in the region of interest allows for improved extraction of information from the samples, even at shorter liquid chromatography gradients of 15 min. We validated our approach on human neutrophil and plasma samples of known makeup, in which we captured the anticipated glycan heterogeneity (paucimannose, phosphomannose, high mannose, hybrid and complex glycans) from plasma and neutrophil samples at the expected abundances. As the method is compatible with off-the-shelve data acquisition routines and data analysis software, it can readily be applied by any laboratory with a timsTOF Pro and is reproducible as demonstrated by a comparison between two laboratories.


Assuntos
Glicopeptídeos , Peptídeos , Humanos , Glicopeptídeos/análise , Espectrometria de Massas em Tandem/métodos , Polissacarídeos/química , Íons
3.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35173049

RESUMO

Kinesin-14 molecular motors represent an essential class of proteins that bind microtubules and walk toward their minus-ends. Previous studies have described important roles for Kinesin-14 motors at microtubule minus-ends, but their role in regulating plus-end dynamics remains controversial. Kinesin-14 motors have been shown to bind the EB family of microtubule plus-end binding proteins, suggesting that these minus-end-directed motors could interact with growing microtubule plus-ends. In this work, we explored the role of minus-end-directed Kinesin-14 motor forces in controlling plus-end microtubule dynamics. In cells, a Kinesin-14 mutant with reduced affinity to EB proteins led to increased microtubule lengths. Cell-free biophysical microscopy assays were performed using Kinesin-14 motors and an EB family marker of growing microtubule plus-ends, Mal3, which revealed that when Kinesin-14 motors bound to Mal3 at growing microtubule plus-ends, the motors subsequently walked toward the minus-end, and Mal3 was pulled away from the growing microtubule tip. Strikingly, these interactions resulted in an approximately twofold decrease in the expected postinteraction microtubule lifetime. Furthermore, generic minus-end-directed tension forces, generated by tethering growing plus-ends to the coverslip using λ-DNA, led to an approximately sevenfold decrease in the expected postinteraction microtubule growth length. In contrast, the inhibition of Kinesin-14 minus-end-directed motility led to extended tip interactions and to an increase in the expected postinteraction microtubule lifetime, indicating that plus-ends were stabilized by nonmotile Kinesin-14 motors. Together, we find that Kinesin-14 motors participate in a force balance at microtubule plus-ends to regulate microtubule lengths in cells.


Assuntos
Cinesinas/metabolismo , Microtúbulos/fisiologia , Segregação de Cromossomos , Cinesinas/fisiologia , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fuso Acromático/metabolismo
4.
J Am Chem Soc ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904843

RESUMO

Flexible metal-organic materials (FMOMs) with stepped isotherms can offer enhanced working capacity in storage applications such as adsorbed natural gas (ANG) storage. Unfortunately, whereas >1000 FMOMs are known, only a handful exhibit methane uptake of >150 cm3/cm3 at 65 atm and 298 K, conditions relevant to ANG. Here, we report a double-walled 2-fold interpenetrated diamondoid (dia) network, X-dia-6-Ni, [Ni2L4(µ-H2O)]n, comprising a new azo linker ligand, L- (L- = (E)-3-(pyridin-4-yldiazenyl)benzoate) and 8-connected dinuclear molecular building blocks. X-dia-6-Ni exhibited gas (CO2, N2, CH4) and liquid (C8 hydrocarbons)-induced reversible transformations between its activated narrow-pore ß phase and γ, a large-pore phase with ca. 33% increase in unit cell volume. Single-crystal X-ray diffraction (SCXRD) studies of the as-synthesized phase α, ß, and γ revealed that structural transformations were enabled by twisting of the azo moiety and/or deformation of the MBB. Further insight into these transformations was gained from variable temperature powder XRD and in situ variable pressure powder XRD. Low-temperature N2 and CO2 sorption revealed stepped Type F-II isotherms with saturation uptakes of 422 and 401 cm3/g, respectively. X-dia-6-Ni exhibited uptake of 200 cm3/cm3 (65 atm, 298 K) and a high CH4 working capacity of 166 cm3/cm3 (5-65 bar, 298 K, 33 cycles), the third highest value yet reported for an FMOM and the highest value for an FMOM with a Type F-II isotherm.

5.
Inorg Chem ; 63(27): 12404-12408, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38913858

RESUMO

Thanks to a hemilabile amide-based binding site, a previously unreported amide-functionalized metal-organic framework (MOF) exhibits high acetylene affinity over ethylene, methane, and carbon dioxide, three-in-one.

6.
Chem Rev ; 122(24): 17241-17338, 2022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-36318747

RESUMO

Current energy and environmental challenges demand the development and design of multifunctional porous materials with tunable properties for catalysis, water purification, and energy conversion and storage. Because of their amenability to de novo reticular chemistry, metal-organic frameworks (MOFs) have become key materials in this area. However, their usefulness is often limited by low chemical stability, conductivity and inappropriate pore sizes. Conductive two-dimensional (2D) materials with robust structural skeletons and/or functionalized surfaces can form stabilizing interactions with MOF components, enabling the fabrication of MOF nanocomposites with tunable pore characteristics. Graphene and its functional derivatives are the largest class of 2D materials and possess remarkable compositional versatility, structural diversity, and controllable surface chemistry. Here, we critically review current knowledge concerning the growth, structure, and properties of graphene derivatives, MOFs, and their graphene@MOF composites as well as the associated structure-property-performance relationships. Synthetic strategies for preparing graphene@MOF composites and tuning their properties are also comprehensively reviewed together with their applications in gas storage/separation, water purification, catalysis (organo-, electro-, and photocatalysis), and electrochemical energy storage and conversion. Current challenges in the development of graphene@MOF hybrids and their practical applications are addressed, revealing areas for future investigation. We hope that this review will inspire further exploration of new graphene@MOF hybrids for energy, electronic, biomedical, and photocatalysis applications as well as studies on previously unreported properties of known hybrids to reveal potential "diamonds in the rough".


Assuntos
Grafite , Estruturas Metalorgânicas , Catálise , Condutividade Elétrica , Eletrônica
7.
J Phys Chem A ; 128(8): 1438-1456, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359800

RESUMO

We had calculated adiabatic potential energy surfaces (PESs), nonadiabatic, and spin-orbit (SO) coupling terms among the lowest three electronic states (12A', 22A', and 12A″) of the F + H2 system using the multireference configuration interaction (MRCI) level of theory, and the adiabatic-to-diabatic transformation equations were solved to formulate the diabatic Hamiltonian matrix [J. Chem. Phys. 2020, 153, 174301] for the entire region of the nuclear configuration space. The accuracy of such diabatic PESs is explored by performing scattering calculations to evaluate integral cross sections (ICSs) and rate constants. The nonadiabatic and SO effects are studied by utilizing coupled 3D time-dependent wave packet formalism with zero and nonzero total angular momentum on multiple adiabatic/diabatic surfaces calculation. We depict the convergence profiles of reaction probabilities for the reactive as well as nonreactive processes on various electronic states at different collision energies with respect to total angular momentum including all helicity quantum numbers. Finally, total ICSs are calculated as functions of collision energies for the initial rovibrational state (v = 0, j = 0) of the H2 molecule along with the temperature-dependent rate coefficient, where those quantities are compared with previous theoretical and experimental results.

8.
Phytopathology ; 114(6): 1253-1262, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38170667

RESUMO

Sclerotinia sclerotiorum, the causal agent of white mold infection, is a cosmopolitan fungal pathogen that causes major yield losses in many economically important crops. Spray-induced gene silencing has recently been shown to be a promising alternative method for controlling plant diseases. Based on our prior research, we focused on developing a spray-induced gene silencing approach to control white mold by silencing S. sclerotiorum argonaute 2 (SsAgo2), a crucial part of the fungal small RNA pathway. We compared the lesion size as a result of targeting each ∼500-bp segment of SsAgo2 from the 5' to the 3' end and found that targeting the PIWI/RNaseH domain of SsAgo2 is most effective. External application of double-stranded RNA (dsRNA)-suppressed white mold infection using either in vitro or in vivo transcripts was determined at the rate of 800 ng/0.2 cm2 area with a downregulation of SsAgo2 from infected leaf tissue confirmed by RT-qPCR. Furthermore, magnesium/iron-layered double hydroxide nanosheets loaded with in vitro- and in vivo-transcribed dsRNA segments significantly reduced the rate of S. sclerotiorum lesion expansion. In vivo-produced dsRNA targeting the PIWI/RNaseH domain of the SsAgo2 transcript showed increased efficacy in reducing the white mold symptoms of S. sclerotiorum when combined with layered double hydroxide nanosheets. This approach is promising to produce a large scale of dsRNA that can be deployed as an environmentally friendly fungicide to manage white mold infections in the field.


Assuntos
Proteínas Argonautas , Ascomicetos , Inativação Gênica , Doenças das Plantas , RNA de Cadeia Dupla , Ascomicetos/genética , Ascomicetos/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , RNA de Cadeia Dupla/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Folhas de Planta/microbiologia , Brancos
9.
J Neurochem ; 164(4): 529-552, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36271678

RESUMO

The two hallmarks of Alzheimer's disease (AD) are amyloid-ß (Aß) plaques and neurofibrillary tangles marked by phosphorylated tau. Increasing evidence suggests that aggregating Aß drives tau accumulation, a process that involves synaptic degeneration leading to cognitive impairment. Conversely, there is a realization that non-fibrillar (oligomeric) forms of Aß mediate toxicity in AD. Fibrillar (filamentous) aggregates of proteins across the spectrum of the primary and secondary tauopathies were the focus of recent structural studies with a filament structure-based nosologic classification, but less emphasis was given to non-filamentous co-aggregates of insoluble proteins in the fractions derived from post-mortem human brains. Here, we revisited sarkosyl-soluble and -insoluble extracts to characterize tau and Aß species by quantitative targeted mass spectrometric proteomics, biochemical assays, and electron microscopy. AD brain sarkosyl-insoluble pellets were greatly enriched with Aß42 at almost equimolar levels to N-terminal truncated microtubule-binding region (MTBR) isoforms of tau with multiple site-specific post-translational modifications (PTMs). MTBR R3 and R4 tau peptides were most abundant in the sarkosyl-insoluble materials with a 10-fold higher concentration than N-terminal tau peptides. This indicates that the major proportion of the enriched tau was the aggregation-prone N-terminal and proline-rich region (PRR) of truncated mixed 4R and 3R tau with more 4R than 3R isoforms. High concentration and occupancies of site-specific phosphorylation pT181 (~22%) and pT217 (~16%) (key biomarkers of AD) along with other PTMs in the PRR and MTBR indicated a regional susceptibility of PTMs in aggregated tau. Immunogold labelling revealed that tau may exist in globular non-filamentous form (N-terminal intact tau) co-localized with Aß in the sarkosyl-insoluble pellets along with tau filaments (N-truncated MTBR tau). Our results suggest a model that Aß and tau interact forming globular aggregates, from which filamentous tau and Aß emerge. These characterizations contribute towards unravelling the sequence of events which lead to end-stage AD changes.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Detergentes/química , Detergentes/metabolismo , Proteômica/métodos , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas tau/metabolismo
10.
Plant Cell Physiol ; 63(12): 1764-1786, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-34910215

RESUMO

Melatonin, a tryptophan-derived molecule, is endogenously generated in animal, plant, fungal and prokaryotic cells. Given its antioxidant properties, it is involved in a myriad of signaling functions associated with various aspects of plant growth and development. In higher plants, melatonin (Mel) interacts with plant regulators such as phytohormones, as well as reactive oxygen and nitrogen species including hydrogen peroxide (H2O2), nitric oxide (NO) and hydrogen sulfide (H2S). It shows great potential as a biotechnological tool to alleviate biotic and abiotic stress, to delay senescence and to conserve the sensory and nutritional quality of postharvest horticultural products which are of considerable economic importance worldwide. This review provides a comprehensive overview of the biochemistry of Mel, whose endogenous induction and exogenous application can play an important biotechnological role in enhancing the marketability and hence earnings from postharvest horticultural crops.


Assuntos
Melatonina , Melatonina/farmacologia , Peróxido de Hidrogênio , Antioxidantes , Produtos Agrícolas , Reguladores de Crescimento de Plantas/farmacologia
11.
Small ; 19(37): e2301933, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37140098

RESUMO

Leveraging size effects, nanoparticles of metal-organic frameworks, nanoMOFs, have recently gained traction, amplifying their scopes in electrochemical sensing. However, their synthesis, especially under eco-friendly ambient conditions remains an unmet challenge. Herein, an ambient and fast secondary building unit (SBU)-assisted synthesis (SAS) route to afford a prototypal porphyrinic MOF, Fe-MOF-525 is introduced. Albeit the benign room temperature conditions, Fe-MOF-525(SAS) nanocrystallites obtained are of ≈30 nm size, relatively smaller than the ones conventional solvothermal methods elicit. Integrating Fe-MOF-525(SAS) as a thin film on a conductive indium tin oxide (ITO) surface affords Fe-MOF-525(SAS)/ITO, an electrochemical biosensor. Synergistic confluence of modular MOF composition, analyte-specific redox metalloporphyrin sites, and crystal downsizing contribute to its benchmark voltammetric uric acid (UA) sensing. Showcasing a wide linear range of UA detection with high sensitivity and low detection limit, this SAS strategy coalesces ambient condition synthesis and nanoparticle size control, paving a green way to advanced sensors.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , Benchmarking , Temperatura , Técnicas Eletroquímicas/métodos , Estruturas Metalorgânicas/química , Nanopartículas Metálicas/química , Técnicas Biossensoriais/métodos
12.
Plant Cell Environ ; 46(3): 688-717, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36583401

RESUMO

Hydrogen peroxide (H2 O2 ) is a reactive oxygen species (ROS) and a key modulator of the development and architecture of the root system under physiological and adverse environmental conditions. Nitric oxide (NO) and hydrogen sulphide (H2 S) also exert myriad functions on plant development and signalling. Accumulating pieces of evidence show that depending upon the dose and mode of applications, NO and H2 S can have synergistic or antagonistic actions in mediating H2 O2 signalling during root development. Thus, H2 O2 -NO-H2 S crosstalk might essentially impart tolerance to elude oxidative stress in roots. Growth and proliferation of root apex involve crucial orchestration of NO and H2 S-mediated ROS signalling which also comprise other components including mitogen-activated protein kinase, cyclins, cyclin-dependent kinases, respiratory burst oxidase homolog (RBOH), and Ca2+ flux. This assessment provides a comprehensive update on the cooperative roles of NO and H2 S in modulating H2 O2 homoeostasis during root development, abiotic stress tolerance, and root-microbe interaction. Furthermore, it also analyses the scopes of some fascinating future investigations associated with strigolactone and karrikins concerning H2 O2 -NO-H2 S crosstalk in plant roots.


Assuntos
Óxido Nítrico , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico , Estresse Oxidativo , Peróxido de Hidrogênio/metabolismo
13.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37877494

RESUMO

Nanosheets of transition metal dichalcogenides with prospects of photocatalysis and optoelectronics applications have significant potential in device fabrication due to their low-cost production and easily controllable morphology. Here, non-degenerate pump-probe differential transmission studies with varying pump-fluence have been carried out on single-phase 2H-MoSe2 and mixed-phase 1T/2H-MoSe2 nanosheets to characterize their excited carrier dynamics. For both the samples, the differential probe transmission data show photo-induced bleaching at earlier pump-probe delay followed by photo-induced absorption unveiling signatures of exciton-state filling, exciton trapping, defect-mediated photo-induced probe absorption and recombination of defect bound excitons. The exciton trapping and photo-induced absorption by the trapped-carriers are estimated to occur with time constant of ∼430 to 500 fs based on multi-exponential modelling of the differential transmission till pump-probe delay of ∼3.5 ps. Biexponential modeling of the subsequent slow-recovery of the negative differential transmission at pump-probe delay ≳3.5 ps reveals that the exciton recombination happens via two distinct decay channels with ∼25 to 55 ps (τ1) and ≳1 ns (τ2) time constants. Pump-fluence dependent reduction in τ1 and further modelling of exciton population using higher order kinetic rate equation reveals that the two-body exciton-exciton annihilation governs the exciton recombination initially with a decay rate of ∼10-8 cm3s-1. The detailed analysis suggests that the fraction of total excitons that decay via long decay channel decreases with increasing exciton density for 2H-MoSe2, in contrast to 1T/2H-MoSe2 where the fraction of excitons decaying via long decay channel remains constant.

14.
J Chem Phys ; 159(24)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153145

RESUMO

While carrying out Beyond Born-Oppenheimer theory based diabatization, the solutions of adiabatic-to-diabatic transformation equations depend on the paths of integration over two-dimensional cross-sections of multi-dimensional space of nuclear degrees of freedom. It is shown that such path-dependent solutions leading to diabatic potential energy surface matrices computed along any two different paths are related through an orthogonal matrix, and thereby, those surface matrices should provide unique observables. While exploring the numerical validity of the theoretical framework, we construct diabatic Hamiltonians for the five low-lying electronic states (X̃2E1g, B̃2E2g, and C̃2A2u) of benzene radical cation (C6H6+) along three different approaches of contour integration over two dimensional nuclear planes constituted by seven non-adiabatically active normal modes. Three different diabatic surface matrices are further employed to generate the photoelectron spectra of the benzene molecule (C6H6). It is interesting to note that the spectral peak positions and intensity patterns for all three cases are almost close to each other and also exhibit very good agreement with the experimental results.

15.
Br J Neurosurg ; 37(3): 480-484, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31875723

RESUMO

INTRODUCTION: Spinal surgical wound infection can lead to tissue voids between the spine and skin that can be difficult to reconstruct. Previously described techniques include myocutaneous flaps or perforator based fasciocutaneous flaps. However, these procedures can be time-consuming and surgically challenging. AIMS: This study aimed to assess the effectiveness of a novel technique employing a buried island transposition (BIT) flap, for the repair of non-irradiated dehisced spinal wounds. METHODS: Fifteen patients with failed conservative management of infected midline posterior spinal wounds, underwent wound repair using a local buried islanded de-epithelialized double-breasted fasciocutaneous transposition flap, performed by joint input from the neurosurgical and plastic surgical teams. RESULTS: Mean age was 58 years (range, 31-76 years) with male-to-female ratio of 8:7. The BIT flap was used to repair four wounds in the cervical spine with underlying fixation; four wounds in the thoracic spine with underlying fixation; and seven wounds in the lumbar-sacral spine, of which three had underlying fixation. Pre-operatively, each of the wounds were either dehiscent with exposed hardware, or had large defects unsuitable for primary closure following debridement. There was no procedure-related mortality. All patients demonstrated good wound healing with no subsequent repeat surgery or removal of spinal fixation at mean 24-month follow-up. CONCLUSION: We successfully used a novel buried island transposition flap that has not previously been described in repair of spinal wounds. This technique, which led in all cases to good wound healing and prevented removal of metalwork, has comparable efficacy but increased ease of use compared to traditional techniques. It requires redundant skin at the wound site.


Assuntos
Procedimentos de Cirurgia Plástica , Traumatismos da Coluna Vertebral , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento , Retalhos Cirúrgicos , Coluna Vertebral
16.
Planta ; 256(2): 24, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35767119

RESUMO

Legumes, being angiosperm's third-largest family as well as the second major crop family, contributes beyond 33% of human dietary proteins. The advent of the global food crisis owing to major climatic concerns leads to nutritional deprivation, hunger and hidden hunger especially in developing and underdeveloped nations. Hence, in the wake of promoting sustainable agriculture and nutritional security, apart from the popular legumes, the inclusion of lesser-known and understudied local crop legumes called orphan legumes in the farming systems of various tropical and sub-tropical parts of the world is indeed a need of the hour. Despite possessing tremendous potentialities, wide adaptability under diverse environmental conditions, and rich in nutritional and nutraceutical values, these species are still in a neglected and devalued state. Therefore, a major re-focusing of legume genetics, genomics, and biology is much crucial in pursuance of understanding the yield constraints, and endorsing underutilized legume breeding programs. Varying degrees of importance to these crops do exist among researchers of developing countries in establishing the role of orphan legumes as future crops. Under such circumstances, this article assembles a comprehensive note on the necessity of promoting these crops for further investigations and sustainable legume production, the exploitation of various orphan legume species and their potencies. In addition, an attempt has been made to highlight various novel genetic, molecular, and omics approaches for the improvement of such legumes for enhancing yield, minimizing the level of several anti-nutritional factors, and imparting biotic and abiotic stress tolerance. A significant genetic enhancement through extensive research in 'omics' areas is the absolute necessity to transform them into befitting candidates for large-scale popularization around the globe.


Assuntos
Fabaceae , Agricultura , Produtos Agrícolas/genética , Fabaceae/genética , Genômica , Melhoramento Vegetal , Verduras
17.
Chemphyschem ; 23(23): e202200482, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36052444

RESUMO

We construct theoretically "exact" and numerically "accurate" Beyond Born-Oppenheimer (BBO) based diabatic potential energy surfaces (PESs) of pyrazine (C4 N2 H4 ) molecule involving lowest four excited adiabatic PESs (S1 to S4 ) and nonadiabatic coupling terms (NACTs) among those surfaces as functions of nonadiabatically active normal modes (Q1 , Q6a , Q9a and Q10a ) to compute its photoabsorption (PA) spectra. Those adiabatic PESs are calculated using CASSCF as well as MRCI based methodologies, where NACTs are obtained from CP-MCSCF approach. Employing ab initio quantities (adiabatic PESs and NACTs), it is possible to depict the conical intersections (CIs) and develop matrices of diabatic PESs over six normal mode planes. Once single-valued, smooth, symmetric and continuous 2×2 and 4×4 diabatic surface matrices are in hand for the first time, such matrices are used to perform multi-state multi-mode nuclear dynamics with the aid of Time-Dependent Discrete Variable Representation (TDDVR) methodology initializing the product type wavefunction on 1 1 B 1 u ${{1}^{1}{B}_{1u}}$ (S1 ) and 1 1 B 2 u ${{1}^{1}{B}_{2u}}$ (S2 ) states to obtain the corresponding PA spectra. TDDVR calculated spectra for those states (S1 and S2 ) obtained from BBO based 2×2 and 4×4 diabatic surface matrices show good and better agreement with the experimental results, respectively. Both of these calculated results depict better peak progression over the existing profiles of Multi-Configuration Time-Dependent Hartree (MCTDH) dynamics over 2×2 Vibronic Coupling Model (VCM) Hamiltonian.

18.
Anal Bioanal Chem ; 414(18): 5683-5693, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35426495

RESUMO

Isomerization of aspartic acid (Asp) residues in long-lived proteins is a key feature associated with neurodegenerative proteinopathies such as Alzheimer's disease (AD). Recently, using ultra high-performance liquid chromatography (UHPLC) coupled with drift tube ion mobility mass spectrometry (DTIMS-MS), we documented the extensive Asp isomerization in amyloid-beta (Aß) peptides depositing in the extracellular cortical plaques (senile plaques) of the AD brain. Aß1-15 was estimated to be ~ 85% isomerized, while Aß4-15 another major constituent of these senile plaques was ~ 50% isomerized in AD brain. Low resolution on the standard demultiplexed ion mobility resulted in poor separation of these N-truncated Aß isomers in the ion mobility domain. Here, using the same ion multiplexed dataset, we applied new post-acquisition data reconstruction technique, high-resolution demultiplexing (HRdm), to improve the resolution of these Aß isomers in the ion mobility dimension. We demonstrate that for the complex proteomic AD brain digests, HRdm could successfully resolve three out of four major Asp isomers of Aß1-15. For Aß2-15 and Aß4-15, the significant resolution enhancement in the HRdm data resulted in baseline peak separation of the respective Asp isomers. An analysis of two-peak resolution (Rpp) and peak-to-peak separation (ΔP) indicated twofold enhancement for the Asp-isomerized Aß species. HRdm performed with an effective resolving power (Rp) of between 150 and 160 for the highest deconvolution settings in comparison to ~ 40 to 65 in the standard settings. These major resolution improvements in the ion mobility domain for the endogenous Aß isomers demonstrate the feasibility of in situ measurement of peptide isomers and their role in the mechanism of amyloid plaque formation in AD.


Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Encéfalo/metabolismo , Humanos , Isomerismo , Placa Amiloide/metabolismo , Proteômica , Software
19.
Phys Chem Chem Phys ; 24(4): 2185-2202, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35006221

RESUMO

In this article, Beyond Born-Oppenheimer (BBO) treatment is implemented to construct diabatic potential energy surfaces (PESs) of 1,3,5-C6H3F3+ over a series [eighteen (18)] of two-dimensional (2D) nuclear planes constituted with eleven normal modes (Q2, Q9x, Q9y, Q13x, Q13y, Q18x, Q18y, Q10x, Q10y, Q12x and Q12y) to include all possible nonadiabatic interactions among six coupled electronic states (X̃2E'', , B̃2E' and ). We had formulated explicit expressions of adiabatic to diabatic transformation (ADT) equations [S. Mukherjee, J. Dutta, B. Mukherjee, S. Sardar and S. Adhikari, J. Chem. Phys., 2019, 150, 064308] for the same system forming six state sub-Hilbert space and at present, these ADT equations are solved by incorporating MRCI level ab initio adiabatic PESs and CP-MCSCF calculated nonadiabatic coupling terms (NACTs) to derive diabatic PESs and couplings. Such single-valued, smooth, symmetric and continuous diabatic surface matrices are utilized to carry out multi-state multi-mode nuclear dynamics with the help of time-dependent discrete variable representation (TDDVR) methodology to compute the photoelectron (PE) spectra of 1,3,5-C6H3F3. Our theoretically calculated spectra for X̃2E'', and states using BBO treatment and TDDVR dynamics show peak by peak correspondence with the experimental results as well as better than the findings of the multi-configuration time-dependent Hartree (MCTDH) method.

20.
J Phys Chem A ; 126(5): 691-709, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089047

RESUMO

For the first time, using three different electronic structure methodologies, namely, CASSCF, RS2c, and MRCI(SD), we construct ab initio adiabatic potential energy surfaces (APESs) and nonadiabatic coupling term (NACT) of two electronic states (5Eg) of MnO69- unit, where eight such units share one La atom in LaMnO3 crystal. While fitting those APESs with analytic functions of normal modes (Qx, Qy), an empirical scaling factor is introduced considering the mass ratio of eight MnO69- units with and without one La atom to explore the environmental (mass) effect on MnO69- unit. When the roto-vibrational levels of MnO69- Hamiltonian are calculated, peak positions computed from ab initio constructed excited APESs are found to be enough close with the experimental satellite transitions [ J. Exp. Theor. Phys. 2016, 122, 890-901] endorsing our earlier model results [ J. Chem. Phys. 2019, 150, 064703]. In order to explore the electron-nuclear coupling in an alternate way, theoretically "exact" and numerically "accurate" beyond Born-Oppenheimer (BBO) theory based diabatic potential energy surfaces (PESs) of MnO69- are constructed to generate the photoelectron (PE) spectra. The PE spectral band also exhibits good peak by peak correspondence with the higher satellite transitions in the dielectric function spectra of the LaMnO3 complex.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA