Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 141(16): 3222-32, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25063455

RESUMO

Wingless (Wg)/Wnt signaling is fundamental in metazoan development. Armadillo (Arm)/ß-catenin and Dishevelled (Dsh) are key components of Wnt signal transduction. Recent studies suggest that intracellular trafficking of Wnt signaling components is important, but underlying mechanisms are not well known. Here, we show that Klp64D, the Drosophila homolog of Kif3A kinesin II subunit, is required for Wg signaling by regulating Arm during wing development. Mutations in klp64D or RNAi cause wing notching and loss of Wg target gene expression. The wing notching phenotype by Klp64D knockdown is suppressed by activated Arm but not by Dsh, suggesting that Klp64D is required for Arm function. Furthermore, klp64D and arm mutants show synergistic genetic interaction. Consistent with this genetic interaction, Klp64D directly binds to the Arm repeat domain of Arm and can recruit Dsh in the presence of Arm. Overexpression of Klp64D mutated in the motor domain causes dominant wing notching, indicating the importance of the motor activity. Klp64D shows subcellular localization to intracellular vesicles overlapping with Arm and Dsh. In klp64D mutants, Arm is abnormally accumulated in vesicular structures including Golgi, suggesting that intracellular trafficking of Arm is affected. Human KIF3A can also bind ß-catenin and rescue klp64D RNAi phenotypes. Taken together, we propose that Klp64D is essential for Wg signaling by trafficking of Arm via the formation of a conserved complex with Arm.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Domínio Armadillo/fisiologia , Proteínas de Drosophila/fisiologia , Cinesinas/fisiologia , Fosfoproteínas/fisiologia , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Padronização Corporal , Proteínas Desgrenhadas , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Complexo de Golgi/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Interferência de RNA , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Asas de Animais/embriologia , beta Catenina/metabolismo
2.
Genesis ; 48(9): 522-30, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20506262

RESUMO

Photoreceptor morphogenesis requires specific and coordinated localization of junctional markers at different stages of development. Here, we provide evidence that Drosophila Klp64D, a homolog of Kif3A motor subunit of the heterotrimeric Kinesin II complex, is essential for viability of developing photoreceptors and localization of junctional proteins. Genetic analysis of mutant clones shows that absence of Klp64D protein in early larval eye disc does not affect initial differentiation, but results in abnormal nuclear position in differentiating photoreceptors. These cells eventually die in the pupal stage, indicating klp64D's role in cell viability. The function of Klp64D protein is cell type specific because the p35 cell death inhibitor can rescue cell death in cone cells but not photoreceptors. In contrast to early induction of mutant clones, late induction during third instar larval stage just prior to pupation allows survival of single- or few-celled clones of klp64D mutant cells. Analysis of these lately induced clones shows that Klp64D function is essential for Bazooka (Par-3 homolog) and Armadillo localization to the adherens junction (AJ) in pupal photoreceptors. These findings suggest that Kinesin II complex plays a cell type-specific function in the localization of AJ and cell polarity proteins in the developing retina, thereby contributing to photoreceptor morphogenesis.


Assuntos
Junções Aderentes/fisiologia , Polaridade Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Cinesinas/metabolismo , Morfogênese/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Proteínas do Domínio Armadillo/metabolismo , Sobrevivência Celular/fisiologia , Clonagem Molecular , Drosophila/metabolismo , Proteínas de Drosophila/genética , Imunofluorescência , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Microscopia de Fluorescência , Células Fotorreceptoras de Invertebrados/metabolismo , Pupa/metabolismo , Pupa/fisiologia , Fatores de Transcrição/metabolismo
3.
J Theor Biol ; 254(2): 390-9, 2008 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-18621403

RESUMO

During anterior-posterior axis specification in the Drosophila embryo, the Hunchback (Hb) protein forms a sharp boundary at the mid-point of the embryo with great positional precision. While Bicoid (Bcd) is a known upstream regulator for hb expression, there is evidence to suggest that Hb effectively filters out "noisy" data received from varied Bcd gradients. We use mathematical models to explore simple regulatory networks which filter out such noise to produce a precise Hb boundary. We find that in addition to Bcd and Hb, at least one freely evolving protein is necessary. An automated search yields a number of examples of three-protein networks exhibiting the desired precision. In all such networks, Hb diffuses much slower than the third protein. In addition, the action of Hb on the third protein is the opposite of the action of the third protein on hb (i.e. if Hb activates the third protein, then the third protein inhibits hb expression, and vice versa). Most of the discovered systems satisfy the known biological properties, that Bcd activates hb, and that Hb activates its own expression. We find that all network topologies satisfying these constraints arise among the networks exhibiting the desired precision. Investigating the dynamics of these networks, we find that under a general class of non-uniform initial conditions, Bcd can be eliminated from the system and the spatiotemporal evolution of these two proteins alone is sufficient to recapture the dynamics. We hypothesize that Bcd is needed only to spatially disturb the gradient of the third protein, and then becomes unnecessary in the further evolution of the Hb border. This provides a possible explanation as to why the Hb dynamics are robust under perturbations of the Bcd gradient. Under this hypothesis, other proteins would be able to assume the role of Bcd in our simulations (possibly in the case of evolutionary divergences or a redundancy in the process), with the only constraint that they act to positively regulate hb.


Assuntos
Simulação por Computador , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Morfogênese/genética , Fatores de Transcrição/genética , Animais , Padronização Corporal/genética , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Transativadores/genética
4.
Dev Biol ; 306(2): 624-35, 2007 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-17475233

RESUMO

Establishment and maintenance of apical basal cell polarity are essential for epithelial morphogenesis and have been studied extensively using the Drosophila eye as a model system. Bazooka (Baz), a component of the Par-6 complex, plays important roles in cell polarity in diverse cell types including the photoreceptor cells. In ovarian follicle cells, localization of Baz at the apical region is regulated by Par-1 protein kinase. In contrast, Baz in photoreceptor cells is targeted to adherens junctions (AJs). To examine the regulatory pathways responsible for Baz localization in photoreceptor cells, we studied the effects of Par-1 on Baz localization in the pupal retina. Loss of Par-1 impairs the maintenance of AJ markers including Baz and apical polarity proteins of photoreceptor cells but not the establishment of cell polarity. In contrast, overexpression of Par-1 or Baz causes severe mislocalization of junctional and apical markers, resulting in abnormal cell polarity. However, flies with similar overexpression of kinase-inactive mutant Par-1 or unphosphorylatable mutant Baz protein show relatively normal photoreceptor development. These results suggest that dephosphorylation of Baz at the Par-1 phosphorylation sites is essential for proper Baz localization. We also show that the inhibition of protein phosphatase 2A (PP2A) mimics the polarity defects caused by Par-1 overexpression. Furthermore, Par-1 gain-of-function phenotypes are strongly enhanced by reduced PP2A function. Thus, we propose that antagonism between PP2A and Par-1 plays a key role in Baz localization at AJ in photoreceptor morphogenesis.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Folículo Ovariano/embriologia , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/fisiologia , Células Fotorreceptoras de Invertebrados/embriologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Drosophila melanogaster , Feminino , Quinase 3 da Glicogênio Sintase , Masculino , Mitose , Modelos Biológicos , Fosforilação , Proteína Quinase C/metabolismo , Proteína Fosfatase 2 , Proteínas Serina-Treonina Quinases/genética
5.
Fly (Austin) ; 1(4): 235-7, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18820442

RESUMO

Apical basal cell polarity is a fundamental feature of all epithelial cells. Identification of the genes involved in the polarization of epithelial cells has begun to reveal the mechanisms underlying the establishment and maintenance of cell polarity. An important issue is to understand the molecular basis for localization of cell polarity proteins in the context of the developing organism. Bazooka (Baz, Drosophila homolog of Par-3) plays a crucial role in organizing cell polarity in several different tissues. In the ovarian follicle epithelium, Par-1 protein kinase regulates Baz localization to the apical cell cortex by excluding phosphorylated Baz from the lateral region. In photoreceptor cells of retinal epithelium, Baz is targeted to the adherens junction (AJ) instead of the apical domain. Our study suggests that in photoreceptors, Par-1 blocks the localization of Baz to AJ whereas protein phosphatase 2A (PP2A) promotes Baz localization by antagonizing the Par-1 effects. In this extra view, we provide a brief overview and perspective of our findings on the antagonistic function of Par-1 and PP2A in Baz localization during photoreceptor morphogenesis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Células Fotorreceptoras de Invertebrados/embriologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Polaridade Celular , Drosophila/metabolismo , Proteínas de Drosophila/análise , Olho/embriologia , Quinase 3 da Glicogênio Sintase , Peptídeos e Proteínas de Sinalização Intracelular/análise , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA