Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(33): e202401514, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38775224

RESUMO

Invited for the cover of this issue is the group of Danqing Liu and co-workers at the University of Eindhoven University of Technology. The image depicts two-step photopolymerization-induced diffusion for the fabrication of gradient-structured dual-responsive thiol-ene networks. Read the full text of the article at 10.1002/chem.202400515.

2.
Chemistry ; 30(33): e202400515, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457259

RESUMO

Stimuli-responsive materials have recently gained significant attention in the field of soft robotics, sensors, and biomimetic devices. The most facile way for the fabrication of such materials remains to endow bilayer structures which are fabricated with the combination of active and passive layers. Although, easily fabricated, these structures suffer from the generation of stress points between connection areas. In this work we develop a method to create a thin film with controlled cross-link variation across its thickness. The cross-link gradient is achieved through polymerization induced diffusion of dithiol molecules in thiol-ene network. As a result, the film exhibits bending deformation upon illumination with light or exposure to a chemical solvent, thereby demonstrating dual responsiveness. Light actuation of the film is achieved via photothermal effects due to the incorporation of dye into the system which can absorb UV light and heat the network. While solvent induced actuation is due to anisotropic swelling. Furthermore, the straightforward fabrication procedure allows for the creation of more complex deformations by patterning the film using a photomask during photopolymerization.

3.
ACS Appl Mater Interfaces ; 16(17): 22696-22703, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646711

RESUMO

4D microstructured actuators are micro-objects made of stimuli-responsive materials capable of induced shape deformations, with applications ranging from microrobotics to smart micropatterned haptic surfaces. The novel technology dual-wavelength volumetric microlithography (DWVML) realizes rapid printing of high-resolution 3D microstructures and so has the potential to pave the way to feasible manufacturing of 4D microdevices. In this work, DWVML is applied for the first time to printing stimuli-responsive materials, namely, liquid crystal networks (LCNs). An LCN photoresist is developed and characterized, and large arrays of up to 5625 LCN micropillars with programmable shape changes are produced by means of DWVML in the time span of seconds, over areas as large as ∼5.4 mm2. The production rate of 0.24 mm3 h-1 is achieved, exceeding speeds previously reported for additive manufacturing of LCNs by 2 orders of magnitude. Finally, a membrane with tunable, micrometer-sized pores is fabricated to illustrate the potential DWVML holds for real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA