Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 139(7): 1327-41, 2009 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20064378

RESUMO

p53 is a tumor suppressor protein whose function is frequently lost in cancers through missense mutations within the Tp53 gene. This results in the expression of point-mutated p53 proteins that have both lost wild-type tumor suppressor activity and show gain of functions that contribute to transformation and metastasis. Here, we show that mutant p53 expression can promote invasion, loss of directionality of migration, and metastatic behavior. These activities of p53 reflect enhanced integrin and epidermal growth factor receptor (EGFR) trafficking, which depends on Rab-coupling protein (RCP) and results in constitutive activation of EGFR/integrin signaling. We provide evidence that mutant p53 promotes cell invasion via the inhibition of TAp63, and simultaneous loss of p53 and TAp63 recapitulates the phenotype of mutant p53 in cells. These findings open the possibility that blocking alpha5/beta1-integrin and/or the EGF receptor will have therapeutic benefit in mutant p53-expressing cancers.


Assuntos
Movimento Celular , Integrina alfa5beta1/metabolismo , Metástase Neoplásica , Proteína Supressora de Tumor p53/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Mutação , Pseudópodes/metabolismo , Proteína Supressora de Tumor p53/genética
2.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32184261

RESUMO

EML4-ALK is an oncogenic fusion present in ∼5% of non-small cell lung cancers. However, alternative breakpoints in the EML4 gene lead to distinct variants of EML4-ALK with different patient outcomes. Here, we show that, in cell models, EML4-ALK variant 3 (V3), which is linked to accelerated metastatic spread, causes microtubule stabilization, formation of extended cytoplasmic protrusions and increased cell migration. EML4-ALK V3 also recruits the NEK9 and NEK7 kinases to microtubules via the N-terminal EML4 microtubule-binding region. Overexpression of wild-type EML4, as well as constitutive activation of NEK9, also perturbs cell morphology and accelerates migration in a microtubule-dependent manner that requires the downstream kinase NEK7 but does not require ALK activity. Strikingly, elevated NEK9 expression is associated with reduced progression-free survival in EML4-ALK patients. Hence, we propose that EML4-ALK V3 promotes microtubule stabilization through NEK9 and NEK7, leading to increased cell migration. This represents a novel actionable pathway that could drive metastatic disease progression in EML4-ALK lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/genética , Microtúbulos , Quinases Relacionadas a NIMA/genética , Proteínas de Fusão Oncogênica/genética , Receptores Proteína Tirosina Quinases
3.
Mol Cell ; 50(6): 805-17, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23747015

RESUMO

p53 is a transcription factor that mediates tumor suppressor responses. Correct folding of the p53 protein is essential for these activities, and point mutations that induce conformational instability of p53 are frequently found in cancers. These mutant p53s not only lose wild-type activity but can also acquire the ability to promote invasion and metastasis. We show that folding of wild-type p53 is promoted by an interaction with the chaperonin CCT. Depletion of this chaperone in cells results in the accumulation of misfolded p53, leading to a reduction in p53-dependent gene expression. Intriguingly, p53 proteins mutated to prevent the interaction with CCT show conformational instability and acquire an ability to promote invasion and random motility that is similar to the activity of tumor-derived p53 mutants. Our data therefore suggest that both growth suppression and cell invasion may be differentially regulated functions of wild-type p53.


Assuntos
Chaperoninas do Grupo II/metabolismo , Dobramento de Proteína , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Genes Reporter , Chaperoninas do Grupo II/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transcrição Gênica , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
4.
Biochem Soc Trans ; 47(2): 725-732, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30850425

RESUMO

Cell-in-cell (CIC) is a term used to describe the presence of one, usually living, cell inside another cell that is typically considered non-phagocytic. Examples of this include tumour cells inside tumour cells (homotypic), mesenchymal stem cells inside tumour cells (heterotypic) or immune cells inside tumour cells (heterotypic). CIC formation can occur in cell lines and in tissues and it has been most frequently observed during inflammation and in cancers. Over the past 10 years, many researchers have studied CIC structures and a few different models have been proposed through which they can be formed, including entosis, cannibalism and emperipolesis among others. Recently, our laboratory discovered a role for mutant p53 in facilitating the formation of CIC and promoting genomic instability. These data and research by many others have uncovered a variety of molecules involved in CIC formation and have started to give us an idea of why they are formed and how they could contribute to oncogenic processes. In this perspective, we summarise current literature and speculate on the role of CIC in cancer biology.


Assuntos
Neoplasias/metabolismo , Animais , Biomarcadores/metabolismo , Entose/genética , Entose/fisiologia , Humanos , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
5.
Int J Mol Sci ; 20(24)2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31817935

RESUMO

The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53's inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.


Assuntos
Proteínas Mutantes/metabolismo , Mutação , Neoplasias/patologia , Fatores de Transcrição/metabolismo , Proteína Tumoral p73/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Humanos , Proteínas Mutantes/genética , Neoplasias/genética , Neoplasias/metabolismo , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição/genética , Proteína Tumoral p73/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
6.
Biochem Soc Trans ; 44(2): 460-6, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27068955

RESUMO

In many human cancers p53 expression is lost or a mutant p53 protein is expressed. Over the past 15 years it has become apparent that a large number of these mutant p53 proteins have lost wild type function, but more importantly have gained functions that promote tumorigenesis and drive chemo-resistance, invasion and metastasis. Many researchers have investigated the underlying mechanisms of these Gain-Of-Functions (GOFs) and it has become apparent that many of these functions are the result of mutant p53 hijacking other transcription factors. In this review, we summarize the latest research on p53 GOF and categorize these in light of the hallmarks of cancer as presented by Hannahan and Weinberg.


Assuntos
Mutação , Proteína Supressora de Tumor p53/metabolismo , Apoptose , Proliferação de Células , Montagem e Desmontagem da Cromatina , Metabolismo Energético , Instabilidade Genômica , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica , Ligação Proteica
7.
J Biol Chem ; 289(1): 122-32, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24220032

RESUMO

The control and processing of microRNAs (miRs) is critical in the regulation of all cellular responses. Previous studies have suggested that a reduction in the expression of certain miRs, or an overall decrease in miR processing through the partial depletion of Dicer, can promote enhanced metastatic potential. We show here that Dicer depletion can promote the invasive behavior of cells that is reflected in enhanced recycling and activation of the growth factor receptors Met and EGF receptor. These responses are also seen in response to the expression of tumor-derived mutant p53s, and we show that mutant p53 can down-regulate Dicer expression through both direct inhibition of the TAp63-mediated transcriptional activation of Dicer and a TAp63-independent control of Dicer protein expression. Our results delineate a clear relationship between mutant p53, TAp63, and Dicer that might contribute to the metastatic function of mutant p53 but, interestingly, also reveal TAp63-independent functions of mutant p53 in controlling Dicer activity.


Assuntos
RNA Helicases DEAD-box/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Mutação , Neoplasias/metabolismo , Ribonuclease III/biossíntese , Fatores de Transcrição/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , RNA Helicases DEAD-box/genética , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias/genética , Neoplasias/patologia , Ribonuclease III/genética , Fatores de Transcrição/genética , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
8.
Proc Natl Acad Sci U S A ; 109(38): 15312-7, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949650

RESUMO

p63 inhibits metastasis. Here, we show that p63 (both TAp63 and ΔNp63 isoforms) regulates expression of miR-205 in prostate cancer (PCa) cells, and miR-205 is essential for the inhibitory effects of p63 on markers of epithelial-mesenchymal transition (EMT), such as ZEB1 and vimentin. Correspondingly, the inhibitory effect of p63 on EMT markers and cell migration is reverted by anti-miR-205. p53 mutants inhibit expression of both p63 and miR-205, and the cell migration, in a cell line expressing endogenous mutated p53, can be abrogated by pre-miR-205 or silencing of mutated p53. In accordance with this in vitro data, ΔNp63 or miR-205 significantly inhibits the incidence of lung metastasis in vivo in a mouse tail vein model. Similarly, one or both components of the p63/miR-205 axis were absent in metastases or colonized lymph nodes in a set of 218 human prostate cancer samples. This was confirmed in an independent clinical data set of 281 patients. Loss of this axis was associated with higher Gleason scores, an increased likelihood of metastatic and infiltration events, and worse prognosis. These data suggest that p63/miR-205 may be a useful clinical predictor of metastatic behavior in prostate cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fosfoproteínas/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Animais , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Metástase Neoplásica , Transplante de Neoplasias , Isoformas de Proteínas
9.
EMBO Rep ; 13(7): 638-44, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22653443

RESUMO

The invasiveness of tumour cells depends on changes in cell shape, polarity and migration. Mutant p53 induces enhanced tumour metastasis in mice, and human cells overexpressing p53R273H have aberrant polarity and increased invasiveness, demonstrating the 'gain of function' of mutant p53 in carcinogenesis. We hypothesize that p53R273H interacts with mutant p53-specific binding partners that control polarity, migration or invasion. Here we analyze the p53R273H interactome using stable isotope labelling by amino acids in cell culture and quantitative mass spectrometry, and identify at least 15 new potential mutant p53-specific binding partners. The interaction of p53R273H with one of them--nardilysin (NRD1)--promotes an invasive response to heparin binding-epidermal growth factor-like growth factor that is p53R273H-dependant but does not require Rab coupling protein or p63. Advanced proteomics has thus allowed the detection of a new mechanism of p53-driven invasion.


Assuntos
Metaloendopeptidases/metabolismo , Invasividade Neoplásica , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Polaridade Celular , Fator de Crescimento Epidérmico/metabolismo , Histidina , Espectrometria de Massas/métodos , Camundongos , Mutação de Sentido Incorreto , Ligação Proteica , Proteômica
10.
Nutrients ; 16(12)2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38931171

RESUMO

Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC. In culture, elevation of intracellular taurine concentration to OC ascites-cell-associated levels suppressed proliferation of various OC cell lines and patient-derived organoids, reduced glycolysis, and induced cell protection from cisplatin. Taurine cell protection was associated with decreased DNA damage in response to cisplatin. A combination of RNA sequencing, reverse-phase protein arrays, live-cell microscopy, flow cytometry, and biochemical validation experiments provided evidence for taurine-mediated induction of mutant or wild-type p53 binding to DNA, activation of p53 effectors involved in negative regulation of the cell cycle (p21), and glycolysis (TIGAR). Paradoxically, taurine's suppression of cell proliferation was associated with activation of pro-mitogenic signal transduction including ERK, mTOR, and increased mRNA expression of major DNA damage-sensing molecules such as DNAPK, ATM and ATR. While inhibition of ERK or p53 did not interfere with taurine's ability to protect cells from cisplatin, suppression of mTOR with Torin2, a clinically relevant inhibitor that also targets DNAPK and ATM/ATR, broke taurine's cell protection. Our studies implicate that elevation of intracellular taurine could suppress cell growth and metabolism, and activate cell protective mechanisms involving mTOR and DNA damage-sensing signal transducti.


Assuntos
Cisplatino , Dano ao DNA , Neoplasias Ovarianas , Serina-Treonina Quinases TOR , Taurina , Proteína Supressora de Tumor p53 , Taurina/farmacologia , Humanos , Serina-Treonina Quinases TOR/metabolismo , Feminino , Neoplasias Ovarianas/metabolismo , Dano ao DNA/efeitos dos fármacos , Cisplatino/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Glicólise/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Antineoplásicos/farmacologia
11.
bioRxiv ; 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36909636

RESUMO

Loss of treatment-induced ovarian carcinoma (OC) growth suppression poses a major clinical challenge because it leads to disease recurrence. Therefore, there is a compelling need for well- -tolerated approaches that can support tumor growth-suppression after therapy is stopped. We have profiled ascites as OC tumor microenvironments to search for potential non-toxic soluble components that would activate tumor suppressor pathways in OC cells. Our investigations revealed that low levels of taurine, a non-proteogenic sulfonic amino acid, were present within OC ascites. Taurine supplementation, beyond levels found in ascites, induced growth suppression without causing cytotoxicity in various OC cells, including chemotherapy-resistant cell clones and patient-derived organoids representing primary or chemotherapy recovered disease. Inhibition of proliferation by taurine was linked to increased mutant or wild-type p53 proteins binding to DNA, induction of p21, and independently of p53, TIGAR expression. Taurine-induced activation of p21 and TIGAR was associated with suppression of cell-cycle progression, glycolysis, and mitochondrial respiration. Expression of p21 or TIGAR in OC cells mimicked taurine-induced growth suppression. Our studies support the potential therapeutic value of taurine supplementation in OC.

12.
Cancers (Basel) ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36291874

RESUMO

TP53 is mutated in the majority of human cancers. Mutations can lead to loss of p53 expression or expression of mutant versions of the p53 protein. These mutant p53 proteins have oncogenic potential. They can inhibit any remaining WTp53 in a dominant negative manner, or they can acquire new functions that promote tumour growth, invasion, metastasis and chemoresistance. In this review we explore some of the mechanisms that make mutant p53 cells resistant to chemotherapy. As mutant p53 tumours are resistant to many traditional chemotherapies, many have sought to explore new ways of targeting mutant p53 tumours and reinstate chemosensitivity. These approaches include targeting of mutant p53 stability, mutant p53 binding partners and downstream pathways, p53 vaccines, restoration of WTp53 function, and WTp53 gene delivery. The current advances and challenges of these strategies are discussed.

13.
Traffic ; 10(5): 514-27, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19220812

RESUMO

Copper metabolism MURR1 domain1 (COMMD1) is a novel inhibitor of the transcription factors NF-kappaB and HIF-1, which play important roles in inflammation and tumor growth, respectively. In this study, we identified two highly conserved nuclear export signals (NESs) in COMMD1 and revealed that these NESs were essential and sufficient to induce maximal nuclear export of COMMD1. Inhibition of CRM1-mediated nuclear export by Leptomycin B resulted in nuclear accumulation of COMMD1. In addition, low oxygen concentrations induced the active export of COMMD1 from the nucleus in a CRM1-dependent manner. Disruption of the NESs in COMMD1 increased the repression of COMMD1 in transcriptional activity of NF-kappaB and HIF-1. In conclusion, these data indicate that COMMD1 undergoes constitutive nucleocytoplasmic transport as a novel mechanism to regulate NF-kappaB and HIF-1 signaling.


Assuntos
Núcleo Celular/metabolismo , Citosol/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Cobre/metabolismo , Ácidos Graxos Insaturados , Humanos , Sinais de Exportação Nuclear , Transdução de Sinais , Fator de Transcrição RelA/metabolismo
14.
Front Oncol ; 11: 804107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35757381

RESUMO

Rab11-FIP1 is a Rab effector protein that is involved in endosomal recycling and trafficking of various molecules throughout the endocytic compartments of the cell. The consequence of this can be increased secretion or increased membrane expression of those molecules. In general, expression of Rab11-FIP1 coincides with more tumourigenic and metastatic cell behaviour. Rab11-FIP1 can work in concert with oncogenes such as mutant p53, but has also been speculated to be an oncogene in its own right. In this perspective, we will discuss and speculate upon our observations that mutant p53 promotes Rab11-FIP1 function to not only promote invasive behaviour, but also chemoresistance by regulating a multitude of different proteins.

15.
Cell Death Dis ; 12(2): 207, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627632

RESUMO

TP53 is the most frequently mutated gene in cancers. Mutations lead to loss of p53 expression or expression of a mutant protein. Mutant p53 proteins commonly lose wild-type function, but can also acquire novel functions in promoting metastasis and chemoresistance. Previously, we uncovered a role for Rab-coupling protein (RCP) in mutant p53-dependent invasion. RCP promotes endosomal recycling and signalling of integrins and receptor tyrosine kinases. In a screen to identify novel RCP-interacting proteins, we discovered P-glycoprotein (P-gp). Thus, we hypothesised that mutant p53 could promote chemoresistance through RCP-dependent recycling of P-gp. The interaction between RCP and P-gp was verified endogenously and loss of RCP or mutant p53 rendered cells more sensitive to cisplatin and etoposide. In mutant p53 cells we detected an RCP-dependent delivery of P-gp to the plasma membrane upon drug treatment and decreased retention of P-gp substrates. A co-localisation of P-gp and RCP was seen in mutant p53 cells, but not in p53-null cells upon chemotherapeutic exposure. In conclusion, mutant p53 expression enhanced co-localisation of P-gp and RCP to allow for rapid delivery of P-gp to the plasma membrane and increased resistance to chemotherapeutics.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Membrana Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Membrana/metabolismo , Mutação , Neoplasias/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antineoplásicos/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patologia , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/genética , Etoposídeo/farmacologia , Células HCT116 , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Carga Tumoral/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Nat Commun ; 9(1): 3070, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076358

RESUMO

Cell-in-cell (CIC) structures are commonly seen in tumours. Their biological significance remains unclear, although they have been associated with more aggressive tumours. Here we report that mutant p53 promotes CIC via live cell engulfment. Engulfed cells physically interfere in cell divisions of host cells and for cells without p53 this leads to host cell death. In contrast, mutant p53 host cells survive, display aberrant divisions, multinucleation and tripolar mitoses. In xenograft studies, CIC-rich p53 mutant/null co-cultures show enhanced tumour growth. Furthermore, our results show that CIC is common within lung adenocarcinomas, is an independent predictor of poor outcome and disease recurrence, is associated with mutant p53 expression and correlated to measures of heterogeneity and genomic instability. These findings suggest that pro-tumorigenic entotic engulfment activity is associated with mutant p53 expression, and the two combined are a key factor in genomic instability.


Assuntos
Adenocarcinoma de Pulmão/genética , Formação de Célula em Célula/fisiologia , Instabilidade Genômica , Neoplasias Pulmonares/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese/genética , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Modelos Animais de Doenças , Xenoenxertos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Mitose , Mutação , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Regiões Promotoras Genéticas
17.
Nat Commun ; 9(1): 3540, 2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154405

RESUMO

The original version of this article incorrectly omitted an affiliation of Patricia A. J. Muller: 'Cancer Research UK Manchester Institute, The University of Manchester | Alderley Park, Manchester, SK10 4TG, UK'. This has been corrected in both the PDF and HTML versions of the Article.

18.
Biomedicines ; 3(1): 46-70, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28536399

RESUMO

The c-Met receptor, also known as the HGF receptor, is one of the most studied tyrosine kinase receptors, yet its biological functions and activation mechanisms are still not fully understood. c-Met has been implicated in embryonic development and organogenesis, in tissue remodelling homeostasis and repair and in cancer metastasis. These functions are indicative of the many cellular processes in which the receptor plays a role, including cell motility, scattering, survival and proliferation. In the context of malignancy, sustained activation of c-Met leads to a signalling cascade involving a multitude of kinases that initiate an invasive and metastatic program. Many proteins can affect the activation of c-Met, including a variety of other cell surface and membrane-spanning molecules or receptors. Some cell surface molecules share structural homology with the c-Met extracellular domain and can activate c-Met via clustering through this domain (e.g., plexins), whereas other receptor tyrosine kinases can enhance c-Met activation and signalling through intracellular signalling cascades (e.g., EGFR). In this review, we provide an overview of c-Met interactions and crosstalk with partner molecules and the functional consequences of these interactions on c-Met activation and downstream signalling, c-Met intracellular localization/recycling and c-Met degradation.

19.
Cancer Cell ; 25(3): 304-17, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24651012

RESUMO

Many different types of cancer show a high incidence of TP53 mutations, leading to the expression of mutant p53 proteins. There is growing evidence that these mutant p53s have both lost wild-type p53 tumor suppressor activity and gained functions that help to contribute to malignant progression. Understanding the functions of mutant p53 will help in the development of new therapeutic approaches that may be useful in a broad range of cancer types.


Assuntos
Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Neoplasias/tratamento farmacológico , Neoplasias/genética , Transdução de Sinais/genética
20.
Nat Cell Biol ; 15(1): 2-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23263379

RESUMO

In the past fifteen years, it has become apparent that tumour-associated p53 mutations can provoke activities that are different to those resulting from simply loss of wild-type tumour-suppressing p53 function. Many of these mutant p53 proteins acquire oncogenic properties that enable them to promote invasion, metastasis, proliferation and cell survival. Here we highlight some of the emerging molecular mechanisms through which mutant p53 proteins can exert these oncogenic functions.


Assuntos
Proteínas Mutantes/genética , Mutação , Neoplasias/genética , Proteína Supressora de Tumor p53/genética , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiologia , Neoplasias/tratamento farmacológico , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA