RESUMO
The complexities of modern biomedicine are rapidly increasing. Thus, modeling and simulation have become increasingly important as a strategy to understand and predict the trajectory of pathophysiology, disease genesis, and disease spread in support of clinical and policy decisions. In such cases, inappropriate or ill-placed trust in the model and simulation outcomes may result in negative outcomes, and hence illustrate the need to formalize the execution and communication of modeling and simulation practices. Although verification and validation have been generally accepted as significant components of a model's credibility, they cannot be assumed to equate to a holistic credible practice, which includes activities that can impact comprehension and in-depth examination inherent in the development and reuse of the models. For the past several years, the Committee on Credible Practice of Modeling and Simulation in Healthcare, an interdisciplinary group seeded from a U.S. interagency initiative, has worked to codify best practices. Here, we provide Ten Rules for credible practice of modeling and simulation in healthcare developed from a comparative analysis by the Committee's multidisciplinary membership, followed by a large stakeholder community survey. These rules establish a unified conceptual framework for modeling and simulation design, implementation, evaluation, dissemination and usage across the modeling and simulation life-cycle. While biomedical science and clinical care domains have somewhat different requirements and expectations for credible practice, our study converged on rules that would be useful across a broad swath of model types. In brief, the rules are: (1) Define context clearly. (2) Use contextually appropriate data. (3) Evaluate within context. (4) List limitations explicitly. (5) Use version control. (6) Document appropriately. (7) Disseminate broadly. (8) Get independent reviews. (9) Test competing implementations. (10) Conform to standards. Although some of these are common sense guidelines, we have found that many are often missed or misconstrued, even by seasoned practitioners. Computational models are already widely used in basic science to generate new biomedical knowledge. As they penetrate clinical care and healthcare policy, contributing to personalized and precision medicine, clinical safety will require established guidelines for the credible practice of modeling and simulation in healthcare.
Assuntos
Atenção à Saúde , Treinamento por Simulação , Comunicação , Simulação por Computador , Política de SaúdeRESUMO
Developing and improving mechanism-oriented computational models to better explain biological phenomena is a dynamic and expanding frontier. As the complexity of targeted phenomena has increased, so too has the diversity in methods and terminologies, often at the expense of clarity, which can make reproduction challenging, even problematic. To encourage improved semantic and methodological clarity, we describe the spectrum of Mechanism-oriented Models being used to develop explanations of biological phenomena. We cluster explanations of phenomena into three broad groups. We then expand them into seven workflow-related model types having distinguishable features. We name each type and illustrate with examples drawn from the literature. These model types may contribute to the foundation of an ontology of mechanism-based biomedical simulation research. We show that the different model types manifest and exert their scientific usefulness by enhancing and extending different forms and degrees of explanation. The process starts with knowledge about the phenomenon and continues with explanatory and mathematical descriptions. Those descriptions are transformed into software and used to perform experimental explorations by running and examining simulation output. The credibility of inferences is thus linked to having easy access to the scientific and technical provenance from each workflow stage.
RESUMO
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
RESUMO
Exposure to microgravity causes a bulk fluid shift toward the head, with concomitant changes in blood volume/pressure, and intraocular pressure (IOP). These and other factors, such as intracranial pressure (ICP) changes, are suspected to be involved in the degradation of visual function and ocular anatomical changes exhibited by some astronauts. This is a significant health concern. Here, we describe a lumped-parameter numerical model to simulate volume/pressure alterations in the eye during gravitational changes. The model includes the effects of blood and aqueous humor dynamics, ICP, and IOP-dependent ocular compliance. It is formulated as a series of coupled differential equations and was validated against four existing data sets on parabolic flight, body inversion, and head-down tilt (HDT). The model accurately predicted acute IOP changes in parabolic flight and HDT, and was satisfactory for the more extreme case of inversion. The short-term response to the changing gravitational field was dominated by ocular blood pressures and compliance, while longer-term responses were more dependent on aqueous humor dynamics. ICP had a negligible effect on acute IOP changes. This relatively simple numerical model shows promising predictive capability. To extend the model to more chronic conditions, additional data on longer-term autoregulation of blood and aqueous humor dynamics are needed.NEW & NOTEWORTHY A significant percentage of astronauts present anatomical changes in the posterior eye tissues after spaceflight. Hypothesized increases in ocular blood volume and intracranial pressure (ICP) in space have been considered to be likely factors. In this work, we provide a novel numerical model of the eye that incorporates ocular hemodynamics, gravitational forces, and ICP changes. We find that changes in ocular hemodynamics govern the response of intraocular pressure during acute gravitational change.
Assuntos
Hemodinâmica/fisiologia , Pressão Intracraniana/fisiologia , Pressão Intraocular/fisiologia , Adulto , Astronautas , Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Olho/fisiopatologia , Cabeça/fisiologia , Decúbito Inclinado com Rebaixamento da Cabeça/fisiologia , Humanos , Masculino , Postura/fisiologia , Voo Espacial/métodos , Ausência de PesoRESUMO
Visual impairment and intracranial pressure (VIIP) syndrome is characterized by a number of permanent ophthalmic changes, including loss of visual function. It occurs in some astronauts during long-duration spaceflight missions. Thus, understanding the pathophysiology of VIIP is currently a major priority in space medicine research. It is hypothesized that maladaptive remodeling of the optic nerve sheath (ONS), in response to microgravity-induced elevations in intracranial pressure (ICP), contributes to VIIP. However, little is known about ONS biomechanics. In this study, we developed a custom mechanical testing system that allowed for unconfined lengthening, twisting, and circumferential distension of the porcine ONS during inflation and axial loading. Data were fit to a four-fiber family constitutive equation to extract material and structural parameters. Inflation testing showed a characteristic "cross-over point" in the pressure-diameter curves under different axial loads in all samples that were tested; the cross-over pressure was [Formula: see text] mmHg ([Formula: see text]). Large sample-to-sample variations were observed in the circumferential strain, while only modest variations were observed in the circumferential stress. Multiphoton microscopy revealed that the collagen fibers of the ONS were primarily oriented axially when the tissue was loaded. The existence of this cross-over behavior is expected to be neuroprotective, as it would avoid optic nerve compression during routine changes in gaze angle, so long as ICP was within the normal range. Including these observations into computational models of VIIP will help provide insight into the pathophysiology of VIIP and could help identify risk factors and potential interventions.
Assuntos
Fenômenos Biomecânicos , Pressão Intracraniana/fisiologia , Nervo Óptico/fisiologia , Voo Espacial , Animais , Humanos , Modelos Biológicos , SuínosRESUMO
PURPOSE: Visual impairment and intracranial pressure (VIIP) syndrome is a health concern for long-duration spaceflight, and a proposed risk factor is elevation of intracranial pressure (ICP). Our goal was to use finite element modeling to simulate how elevated ICP and interindividual differences affect tissue deformation within the optic nerve head (ONH). METHODS: We considered three ICP conditions: the upright and supine position on earth and an elevated ICP assumed to occur in chronic microgravity. Within each condition we used Latin hypercube sampling to consider a range of pressures and ONH tissue mechanical properties, determining the influence of each input on the following outcome measures: peak strains in the prelaminar tissue, lamina cribrosa, and retrolaminar optic nerve. Elevated strains can alter cell phenotype and induce tissue remodeling. RESULTS: Elevating ICP increased the strains in the retrolaminar optic nerve. Variations in IOP, ICP, and in optic nerve and lamina cribrosa stiffness had the strongest influence on strains within the ONH. We predicted that 5% to 47% of individuals in microgravity would experience peak strains in the retrolaminar optic nerve larger than expected on earth. Having a soft optic nerve or pia mater and elevated ICP were identified as risk factors for these "extreme" strains. CONCLUSIONS: Intracranial pressure and mechanical properties of the ONH influence the risk for experiencing extreme strains in the retrolaminar optic nerve. These extreme strains may activate mechanosensitive cells that induce tissue remodeling and are a risk factor for the development of VIIP. Future studies must also consider variations in ONH anatomy.
Assuntos
Análise de Elementos Finitos , Glaucoma/patologia , Hipertensão Intracraniana/patologia , Pressão Intracraniana/fisiologia , Disco Óptico/patologia , Doenças do Nervo Óptico/patologia , Progressão da Doença , Glaucoma/complicações , Glaucoma/fisiopatologia , Humanos , Hipertensão Intracraniana/complicações , Hipertensão Intracraniana/fisiopatologia , Pressão Intraocular/fisiologia , Doenças do Nervo Óptico/etiologia , Doenças do Nervo Óptico/fisiopatologia , Reprodutibilidade dos Testes , SíndromeRESUMO
Although changes to visual acuity in spaceflight have been observed in some astronauts since the early days of the space program, the impact to the crew was considered minor. Since that time, missions to the International Space Station have extended the typical duration of time spent in microgravity from a few days or weeks to many months. This has been accompanied by the emergence of a variety of ophthalmic pathologies in a significant proportion of long-duration crewmembers, including globe flattening, choroidal folding, optic disc edema, and optic nerve kinking, among others. The clinical findings of affected astronauts are reminiscent of terrestrial pathologies such as idiopathic intracranial hypertension that are characterized by high intracranial pressure. As a result, NASA has placed an emphasis on determining the relevant factors and their interactions that are responsible for detrimental ophthalmic response to space. This article will describe the Visual Impairment and Intracranial Pressure syndrome, link it to key factors in physiological adaptation to the microgravity environment, particularly a cephalad shifting of bodily fluids, and discuss the implications for ocular biomechanics and physiological function in long-duration spaceflight.