Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 87(8): 4768-71, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23388708

RESUMO

Influenza A viruses are characterized by their ability to evade host immunity, even in vaccinated individuals. To determine how prior immunity shapes viral diversity in vivo, we studied the intra- and interhost evolution of equine influenza virus in vaccinated horses. Although the level and structure of genetic diversity were similar to those in naïve horses, intrahost bottlenecks may be more stringent in vaccinated animals, and mutations shared among horses often fall close to putative antigenic sites.


Assuntos
Evolução Molecular , Doenças dos Cavalos/prevenção & controle , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/imunologia , Infecções por Orthomyxoviridae/veterinária , RNA Viral/genética , Animais , Variação Genética , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Dados de Sequência Molecular , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Seleção Genética , Análise de Sequência de DNA
2.
PLoS Pathog ; 8(5): e1002730, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22693449

RESUMO

Influenza viruses are characterized by an ability to cross species boundaries and evade host immunity, sometimes with devastating consequences. The 2009 pandemic of H1N1 influenza A virus highlights the importance of pigs in influenza emergence, particularly as intermediate hosts by which avian viruses adapt to mammals before emerging in humans. Although segment reassortment has commonly been associated with influenza emergence, an expanded host-range is also likely to be associated with the accumulation of specific beneficial point mutations. To better understand the mechanisms that shape the genetic diversity of avian-like viruses in pigs, we studied the evolutionary dynamics of an Eurasian Avian-like swine influenza virus (EA-SIV) in naïve and vaccinated pigs linked by natural transmission. We analyzed multiple clones of the hemagglutinin 1 (HA1) gene derived from consecutive daily viral populations. Strikingly, we observed both transient and fixed changes in the consensus sequence along the transmission chain. Hence, the mutational spectrum of intra-host EA-SIV populations is highly dynamic and allele fixation can occur with extreme rapidity. In addition, mutations that could potentially alter host-range and antigenicity were transmitted between animals and mixed infections were commonplace, even in vaccinated pigs. Finally, we repeatedly detected distinct stop codons in virus samples from co-housed pigs, suggesting that they persisted within hosts and were transmitted among them. This implies that mutations that reduce viral fitness in one host, but which could lead to fitness benefits in a novel host, can circulate at low frequencies.


Assuntos
Aviadenovirus/genética , Evolução Molecular , Vírus da Influenza A Subtipo H1N1/genética , Infecções por Orthomyxoviridae/virologia , Doenças dos Suínos/virologia , Animais , Anticorpos Antivirais/imunologia , Aviadenovirus/imunologia , Clonagem Molecular , Regulação Viral da Expressão Gênica , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/imunologia , Suínos , Doenças dos Suínos/imunologia , Vacinação , Eliminação de Partículas Virais
3.
J Virol ; 84(8): 3974-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20130053

RESUMO

A key question in pandemic influenza is the relative roles of innate immunity and target cell depletion in limiting primary infection and modulating pathology. Here, we model these interactions using detailed data from equine influenza virus infection, combining viral and immune (type I interferon) kinetics with estimates of cell depletion. The resulting dynamics indicate a powerful role for innate immunity in controlling the rapid peak in virus shedding. As a corollary, cells are much less depleted than suggested by a model of human influenza based only on virus-shedding data. We then explore how differences in the influence of viral proteins on interferon kinetics can account for the observed spectrum of virus shedding, immune response, and influenza pathology. In particular, induction of high levels of interferon ("cytokine storms"), coupled with evasion of its effects, could lead to severe pathology, as hypothesized for some fatal cases of influenza.


Assuntos
Doenças dos Cavalos/imunologia , Doenças dos Cavalos/patologia , Vírus da Influenza A Subtipo H3N8/imunologia , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Infecções por Orthomyxoviridae/veterinária , Animais , Doenças dos Cavalos/virologia , Cavalos , Imunidade Inata , Interferons/metabolismo , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Fatores de Tempo , Eliminação de Partículas Virais
4.
J Virol ; 84(14): 6943-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20444896

RESUMO

Determining the evolutionary basis of cross-species transmission and immune evasion is key to understanding the mechanisms that control the emergence of either new viruses or novel antigenic variants with pandemic potential. The hemagglutinin glycoprotein of influenza A viruses is a critical host range determinant and a major target of neutralizing antibodies. Equine influenza virus (EIV) is a significant pathogen of the horse that causes periodical outbreaks of disease even in populations with high vaccination coverage. EIV has also jumped the species barrier and emerged as a novel respiratory pathogen in dogs, canine influenza virus. We studied the dynamics of equine influenza virus evolution in horses at the intrahost level and how this evolutionary process is affected by interhost transmission in a natural setting. To this end, we performed clonal sequencing of the hemagglutinin 1 gene derived from individual animals at different times postinfection. Our results show that despite the population consensus sequence remaining invariant, genetically distinct subpopulations persist during the course of infection and are also transmitted, with some variants likely to change antigenicity. We also detected a natural case of mixed infection in an animal infected during an outbreak of equine influenza, raising the possibility of reassortment between different strains of virus. In sum, our data suggest that transmission bottlenecks may not be as narrow as originally perceived and that the genetic diversity required to adapt to new host species may be partially present in the donor host and potentially transmitted to the recipient host.


Assuntos
Evolução Molecular , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia , Vírus da Influenza A Subtipo H3N8 , Infecções por Orthomyxoviridae/veterinária , Animais , Surtos de Doenças/veterinária , Cães , Glicoproteínas de Hemaglutininação de Vírus da Influenza/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/genética , Cavalos , Humanos , Evasão da Resposta Imune , Vírus da Influenza A Subtipo H3N8/genética , Vírus da Influenza A Subtipo H3N8/imunologia , Vírus da Influenza A Subtipo H3N8/patogenicidade , Influenza Humana/epidemiologia , Influenza Humana/genética , Influenza Humana/transmissão , Influenza Humana/virologia , Funções Verossimilhança , Mutação , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia
6.
Influenza Other Respir Viruses ; 5(5): 357-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21668691

RESUMO

BACKGROUND: Infection of pigs with swine influenza has been studied experimentally and in the field; however, little information is available on the natural transmission of this virus in pigs. Two studies in an experimental transmission model are presented here, one in immunologically naïve and one in a combination of vaccinated and naïve pigs. OBJECTIVES: To investigate the transmission of a recent 'avian-like' swine H1N1 influenza virus in naive piglets, to assess the antibody response to a commercially available vaccine and to determine the efficiency of transmission in pigs after vaccination. METHODS: Transmission chains were initiated by intranasal challenge of two immunologically naïve pigs. Animals were monitored daily for clinical signs and virus shedding. Pairs of pigs were sequentially co-housed, and once virus was detected in recipients, prior donors were removed. In the vaccination study, piglets were vaccinated and circulating antibody levels were monitored by haemagglutination inhibition assay. To study transmission in vaccinates, a pair of infected immunologically naïve animals was co-housed with vaccinated recipient pigs and further pairs of vaccinates were added sequentially as above. The chain was completed by the addition of naive pigs. RESULTS AND CONCLUSIONS: Transmission of the H1N1 virus was achieved through a chain of six pairs of naïve piglets and through four pairs of vaccinated animals. Transmission occurred with minimal clinical signs and, in vaccinates, at antibody levels higher than previously reported to protect against infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Infecções por Orthomyxoviridae/veterinária , Doenças dos Suínos/transmissão , Animais , Anticorpos Antivirais/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/fisiologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/virologia , Vacinação , Eliminação de Partículas Virais
7.
Vet Microbiol ; 147(1-2): 19-27, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-20580170

RESUMO

Like other influenza A viruses, equine influenza virus undergoes antigenic drift. It is therefore essential that surveillance is carried out to ensure that recommended strains for inclusion in vaccines are kept up to date. Here we report antigenic and genetic characterisation carried out on equine influenza virus strains isolated in North America and Europe over a 2-year period from 2008 to 2009. Nasopharyngeal swabs were taken from equines showing acute clinical signs and submitted to diagnostic laboratories for testing and virus isolation in eggs. The sequence of the HA1 portion of the viral haemagglutinin was determined for each strain. Where possible, sequence was determined directly from swab material as well as from virus isolated in eggs. In Europe, 20 viruses were isolated from 15 sporadic outbreaks and 5 viruses were isolated from North America. All of the European and North American viruses were characterised as members of the Florida sublineage, with similarity to A/eq/Lincolnshire/1/07 (clade 1) or A/eq/Richmond/1/07 (clade 2). Antigenic characterisation by haemagglutination inhibition assay indicated that the two clades could be readily distinguished and there were also at least seven amino acid differences between them. The selection of vaccine strains for 2010 by the expert surveillance panel have taken these differences into account and it is now recommended that representatives of both Florida clade 1 and clade 2 are included in vaccines.


Assuntos
Doenças dos Cavalos/virologia , Vírus da Influenza A Subtipo H3N8/genética , Infecções por Orthomyxoviridae/veterinária , Sequência de Aminoácidos , Animais , Antígenos Virais/análise , Europa (Continente) , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Cavalos , Vírus da Influenza A Subtipo H3N8/classificação , Vírus da Influenza A Subtipo H3N8/isolamento & purificação , Dados de Sequência Molecular , América do Norte , Infecções por Orthomyxoviridae/virologia , Filogenia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Vet Res ; 35(4): 411-23, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15236674

RESUMO

Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.


Assuntos
Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/virologia , Vírus da Influenza A/patogenicidade , Vacinas contra Influenza , Infecções por Orthomyxoviridae/veterinária , Animais , Doenças dos Cavalos/epidemiologia , Cavalos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinação/veterinária
9.
Vaccine ; 22(29-30): 4117-23, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15364465

RESUMO

Several laboratories worldwide have recently experienced problems related to serum cytotoxicity with the equine arteritis virus (EAV) neutralisation test (VN) when using Office International des Epizooties (OIE) reference laboratory prescribed rabbit kidney (RK-13) indicator cells. Cytotoxicity can be mistaken for viral cytopathic effect and has led to increasing difficulties in test interpretation, consequently causing disruption to both equine breeding and disease surveillance. Results from experimental and field-derived data suggest that this serum cytotoxicity is associated with use of a tissue-culture-derived equine herpesvirus vaccine, probably manifested through a vaccine-induced anti-cellular antibody response directed against RK-13 cells. Two alternative EAV VN methods were shown to significantly reduce the effects of cytotoxicity (from 73 to <5% prevalence) among vaccinated horses but did not completely eliminate the problem. Use of ELISA-based tests, which are not affected by serum cytotoxicity but which are not currently recognised as international standards, should be evaluated as a useful backup in screening equine sera for EAV VN antibodies.


Assuntos
Anticorpos Antivirais/sangue , Citotoxicidade Imunológica , Equartevirus/imunologia , Herpesvirus Equídeo 1/imunologia , Herpesvirus Equídeo 4/imunologia , Vacinas Virais/imunologia , Animais , Linhagem Celular , Células Cultivadas , Efeito Citopatogênico Viral , Equartevirus/crescimento & desenvolvimento , Herpesvirus Equídeo 1/crescimento & desenvolvimento , Herpesvirus Equídeo 4/crescimento & desenvolvimento , Cavalos , Testes de Neutralização , Coelhos , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem
10.
Vaccine ; 22(29-30): 4101-9, 2004 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15364463

RESUMO

Two lineages of antigenically distinct equine influenza A H3N8 subtype viruses, American and European, co-circulate. Experiments were conducted in ponies to investigate the protection induced by vaccines containing virus from one lineage against challenge infection with homologous or heterologous virus. Regression analysis showed that vaccinated ponies with average pre-challenge single radial haemolysis (SRH) antibody levels (i.e. 45-190mm2) had a higher probability of becoming infected if they were vaccinated with virus heterologous to the challenge strain than if they were vaccinated with homologous virus. Field studies in Thoroughbred racehorses also showed that SRH antibody levels of >/= 150mm2 induced by vaccines containing a European lineage strain are protective against infection with a virus from the same lineage, but that the same or higher antibody levels may not be protective against an American lineage virus. In conclusion, vaccines should contain virus strains representative of both H3N8 subtype lineages to maximise protection against infection.


Assuntos
Anticorpos Antivirais/sangue , Doenças dos Cavalos/prevenção & controle , Vírus da Influenza A Subtipo H3N8 , Vírus da Influenza A/classificação , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/veterinária , Animais , Antígenos Virais/análise , Hemaglutininas Virais/genética , Doenças dos Cavalos/epidemiologia , Doenças dos Cavalos/virologia , Cavalos , Vírus da Influenza A/genética , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/virologia , Filogenia , Homologia de Sequência de Aminoácidos , Vacinação/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA