RESUMO
This genetic diversity study aimed to estimate the population structure and explore the use of association mapping strategies to identify linked markers for bacterial resistance, growth and fruit quality in pomegranate collections from India. In total, 88 accessions including 37 cultivated types were investigated. A total of 112 alleles were amplified by use of 44 publicly available microsatellites for estimating molecular genetic diversity and population structure. Neighbor-joining analysis, model-based population structure and principal component analysis corroborated the genetic relationships among wild-type and cultivated pomegranate collections from India. Our study placed all 88 germplasm into four clusters. We identified a cultivated clade of pomegranates in close proximity to Daru types of wild-type pomegranates that grow naturally near the foothills of the Himalayas. Admixture analysis sorted various lineages of cultivated pomegranates to their respective ancestral forms. We identified four linked markers for fruit weight, titratable acidity and bacterial blight severity. PGCT001 was found associated with both fruit weight and bacterial blight, and the association with fruit weight during both seasons analyzed was significant after Bonferroni correction. This research demonstrates effectiveness of microsatellites to resolve population structure among the wild and cultivar collection of pomegranates and future use for association mapping studies.
Assuntos
Variação Genética , Lythraceae/genética , Repetições de Microssatélites/genética , Doenças das Plantas/genética , Análise de Variância , Mapeamento Cromossômico , Análise por Conglomerados , Resistência à Doença/genética , Fluxo Gênico , Genética Populacional , Interações Hospedeiro-Patógeno , Índia , Lythraceae/classificação , Lythraceae/microbiologia , Filogenia , Doenças das Plantas/microbiologia , Análise de Componente Principal , Estações do Ano , Especificidade da Espécie , Xanthomonas axonopodis/fisiologiaRESUMO
Pomegranate is an important fruit crop for ensuring livelihood and nutrition security in fragile semi-arid regions of the globe having limited irrigation resources. This is a high-value, nutritionally rich, and export-oriented agri-commodity that ensures high returns on investment to growers across the world. Although it is a valuable fruit crop, it has received only a limited genomics research outcome. To fast-track the pomegranate improvement program, de novo whole-genome sequencing of the main Indian cultivar 'Bhagawa' was initiated by the Indian Council of Agricultural Research-National Research Center on Pomegranate (ICAR-NRCP). We have demonstrated that a combination of commercially available technologies from Illumina, PacBio, 10X Genomics, and BioNano Genomics could be used efficiently for sequencing and reference-grade de novo assembly of the pomegranate genome. The research led to a final reference-quality genome assembly for 'Bhagawa' of 346.08 Mb in 342 scaffolds and an average N50 of 16.12 Mb and N90 of 1088.62 Kb. This assembly covered more than 98% of the estimated pomegranate genome size, 352.54 Mb. The LTR assembly index (LAI) value of 10 and 93.68% Benchmarking Universal Single-Copy Orthologs (BUSCO) completeness score over the 1,440 ortholog genes of the completed pomegranate genome indicates the quality of the assembled pomegranate genome. Furthermore, 29,435 gene models were discovered with a mean transcript length of 2,954 bp and a mean coding sequence length 1,090 bp. Four transcript data samples of pomegranate tissues were mapped over the assembled 'Bhagawa' genome up to 95% significant matches, indicating the high quality of the assembled genome. We have compared the 'Bhagawa' genome with the genomes of the pomegranate cultivars 'Dabenzi' and 'Taishanhong.' We have also performed whole-genome phylogenetic analysis using Computational Analysis of Gene Family Evolution (CAFE) and found that Eucalyptus grandis and pomegranate diverged 64 (60-70) million years ago. About 1,573 protein-coding resistance genes identified in the 'Bhagawa' genome were classified into 32 domains. In all, 314 copies of miRNA belonging to 26 different families were identified in the 'Bhagawa' genome. The reference-quality genome assembly of 'Bhagawa' is certainly a significant genomic resource for accelerated pomegranate improvement.
RESUMO
The simple sequence repeat (SSR) survey of 'Tunisia' genome (296.85 Mb) identified a total of 365,279 perfect SSRs spanning eight chromosomes, with a mean marker density of 1,230.6 SSRs/Mb. We found a positive trend in chromosome length and the SSR abundance as marker density enhanced with a shorter chromosome length. The highest number of SSRs (60,708) was mined from chromosome 1 (55.56 Mb), whereas the highest marker density (1,294.62 SSRs/Mb) was recorded for the shortest chromosome 8 (27.99 Mb). Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. Across the eight chromosomes, the class III had maximum number of SSR motifs (301,684, 82.59%), followed by the class II (31,056, 8.50%) and the class I (5,003, 1.37%). Examination of the distribution of SSR motif types within a chromosome suggested the abundance of hexanucleotide repeats in each chromosome followed by dinucleotides, and these results are consistent with 'Tunisia' genome features as a whole. Concerning major repeat types, AT/AG was the most frequent (14.16%), followed by AAAAAT/AAAAAG (7.89%), A/C (7.54%), AAT/AAG (5.23%), AAAT/AAAG (4.37%), and AAAAT/AAAAG (1.2%) types. We designed and validated a total of 3,839 class I SSRs in the 'Tunisia' genome through electronic polymerase chain reaction (ePCR) and found 1,165 (30.34%) SSRs producing a single amplicon. Then, we selected 906 highly variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across multiple draft genomes of pomegranate, which provided us a subset of 265 highly polymorphic SSRs. Of these, 235 primers were validated on six pomegranate genotypes through wet-lab experiment. We found 221 (94%) polymorphic SSRs on six genotypes, and 187 of these SSRs had ≥ 0.5 PIC values. The utility of the developed SSRs was demonstrated by analyzing genetic diversity of 30 pomegranate genotypes using 16 HvSSRs spanning eight pomegranate chromosomes. In summary, we developed a comprehensive set of highly polymorphic genome-wide SSRs. These chromosome-specific SSRs will serve as a powerful genomic tool to leverage future genetic studies, germplasm management, and genomics-assisted breeding in pomegranate.
RESUMO
Pomegranate (Punica granatum L.) is an important fruit crop, rich in fiber, vitamins, antioxidants, minerals and source of different biologically active compounds. The bacterial blight caused by Xanthomonas axonopodispv. punicae is a serious threat to the crop leading to 60-80% yield loss under epiphytotic conditions. In this work, we have generated comparative transcriptome profile to mark the gene expression signatures during resistance and susceptible interactions. We analyzed leaf and fruits samples of moderately resistant genotype (IC 524207) and susceptible variety (Bhagawa) of pomegranate at three progressive infection stages upon inoculation with the pathogen. RNA-Seq with the Illumina HiSeq 2500 platform revealed 1,88,337 non-redundant (nr) transcript sequences from raw sequencing data, for a total of 34,626 unigenes with size >2 kb. Moreover, 85.3% unigenes were annotated in at least one of the seven databases examined. Comparative analysis of gene-expression signatures in resistant and susceptible varieties showed that the genes known to be involved in defense mechanism in plants were up-regulated in resistant variety. Gene Ontology (GO) analysis successfully annotated 90,485 pomegranate unigenes, of which 68,464 were assigned to biological, 78,107 unigenes molecular function and 44,414 to cellular components. Significantly enriched GO terms in DEGs were related to oxidations reduction biological process, protein binding and oxidoreductase activity. This transcriptome data on pomegranate could help in understanding resistance and susceptibility nature of cultivars and further detailed fine mapping and functional validation of identified candidate gene would provide scope for resistance breeding programme in pomegranate.