Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Crit Rev Food Sci Nutr ; : 1-24, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38494695

RESUMO

Growing demand for the tasty and healthy food has driven the development of low-calorie sweeteners, sweet taste modulators, and bitter masking compounds originated from natural sources. With the discovery of human taste receptors, increasing numbers of sweet taste modulators have been identified through human taste response and molecular docking techniques. However, the discovery of novel taste-active molecules in nature can be accelerated by using advanced spectrometry technologies based on structure-activity relationships (SARs). SARs explain why structurally similar compounds can elicit similar taste qualities. Given the characterization of structural information from reported data, strategies employing SAR techniques to find structurally similar compounds become an innovative approach to expand knowledge of sweeteners. This review aims to summarize the structural patterns of known natural non-nutritive sweeteners, sweet taste enhancers, and bitter masking compounds. Innovative SAR-based approaches to explore sweetener derivatives are also discussed. Most sweet-tasting flavonoids belong to either the flavanonols or the dihydrochalcones and known bitter masking molecules are flavanones. Based on SAR findings that structural similarities are related to the sensory properties, innovative methodologies described in this paper can be applied to screen and discover the derivatives of taste-active compounds or potential taste modulators.

2.
Chem Senses ; 472022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469087

RESUMO

Many widely used psychophysical olfactory tests have limitations that can create barriers to adoption. For example, tests that measure the ability to identify odors may confound sensory performance with memory recall, verbal ability, and prior experience with the odor. Conversely, classic threshold-based tests avoid these issues, but are labor intensive. Additionally, many commercially available tests are slow and may require a trained administrator, making them impractical for use in situations where time is at a premium or self-administration is required. We tested the performance of the Adaptive Olfactory Measure of Threshold (ArOMa-T)-a novel odor detection threshold test that employs an adaptive Bayesian algorithm paired with a disposable odorant delivery card-in a non-clinical sample of individuals (n = 534) at the 2021 Twins Day Festival in Twinsburg, OH. Participants successfully completed the test in under 3 min with a false alarm rate of 7.5% and a test-retest reliability of 0.61. Odor detection thresholds differed by sex (~3.2-fold lower for females) and age (~8.7-fold lower for the youngest versus the oldest age group), consistent with prior studies. In an exploratory analysis, we failed to observe evidence of detection threshold differences between participants who reported a history of COVID-19 and matched controls who did not. We also found evidence for broad-sense heritability of odor detection thresholds. Together, this study suggests the ArOMa-T can determine odor detection thresholds. Additional validation studies are needed to confirm the value of ArOMa-T in clinical or field settings where rapid and portable assessment of olfactory function is needed.


Assuntos
COVID-19 , Transtornos do Olfato , Feminino , Humanos , Odorantes , Reprodutibilidade dos Testes , Teorema de Bayes , Limiar Sensorial , Olfato , Transtornos do Olfato/diagnóstico
3.
Cell Tissue Res ; 383(1): 549-557, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33404845

RESUMO

The necklace glomeruli are a loosely defined group of glomeruli encircling the caudal main olfactory bulb in rodents. Initially defined by the expression of various immunohistochemical markers, they are now better understood in the context of the specialized chemosensory neurons of the main olfactory epithelium and Grueneberg ganglion that innervate them. It has become clear that the necklace region of the rodent main olfactory bulb is composed of multiple distinct groups of glomeruli, defined at least in part by their afferent inputs. In this review, we will explore the necklace glomeruli and the chemosensory neurons that innervate them.


Assuntos
Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Animais , Roedores
4.
Horm Behav ; 136: 105056, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34509673

RESUMO

Mammalian taste bud cells express receptors for numerous peptides implicated elsewhere in the body in the regulation of metabolism, nutrient assimilation, and satiety. The perturbation of several peptide signaling pathways in the gustatory periphery results in changes in behavioral and/or physiological responsiveness to subsets of taste stimuli. We previously showed that Peptide YY (PYY) - which is present in both saliva and in subsets of taste cells - can affect behavioral taste responsiveness and reduce food intake and body weight. Here, we investigated the contributions of taste bud-localized receptors for PYY and the related Neuropeptide Y (NPY) on behavioral taste responsiveness. Y1R, but not Y2R, null mice show reduced responsiveness to sweet, bitter, and salty taste stimuli in brief-access taste tests; similar results were seen when wildtype mice were exposed to Y receptor antagonists in the taste stimuli. Finally, mice in which the gene encoding the NPY propeptide was deleted also showed reduced taste responsiveness to sweet and bitter taste stimuli. Collectively, these results suggest that Y1R signaling, likely through its interactions with NPY, can modulate peripheral taste responsiveness in mice.


Assuntos
Papilas Gustativas , Paladar , Animais , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Knockout , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Peptídeo YY/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Papilas Gustativas/metabolismo
5.
Chem Senses ; 45(7): 493-502, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32556127

RESUMO

The chemical senses of taste and smell play a vital role in conveying information about ourselves and our environment. Tastes and smells can warn against danger and also contribute to the daily enjoyment of food, friends and family, and our surroundings. Over 12% of the US population is estimated to experience taste and smell (chemosensory) dysfunction. Yet, despite this high prevalence, long-term, effective treatments for these disorders have been largely elusive. Clinical successes in other sensory systems, including hearing and vision, have led to new hope for developments in the treatment of chemosensory disorders. To accelerate cures, we convened the "Identifying Treatments for Taste and Smell Disorders" conference, bringing together basic and translational sensory scientists, health care professionals, and patients to identify gaps in our current understanding of chemosensory dysfunction and next steps in a broad-based research strategy. Their suggestions for high-yield next steps were focused in 3 areas: increasing awareness and research capacity (e.g., patient advocacy), developing and enhancing clinical measures of taste and smell, and supporting new avenues of research into cellular and therapeutic approaches (e.g., developing human chemosensory cell lines, stem cells, and gene therapy approaches). These long-term strategies led to specific suggestions for immediate research priorities that focus on expanding our understanding of specific responses of chemosensory cells and developing valuable assays to identify and document cell development, regeneration, and function. Addressing these high-priority areas should accelerate the development of novel and effective treatments for taste and smell disorders.


Assuntos
Transtornos do Olfato/terapia , Distúrbios do Paladar/terapia , Congressos como Assunto , Terapia Genética , Humanos , Transtornos do Olfato/patologia , Medicina Regenerativa , Bibliotecas de Moléculas Pequenas/uso terapêutico , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/metabolismo , Distúrbios do Paladar/patologia
6.
Chem Senses ; 44(6): 409-422, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31125082

RESUMO

The metabolic hormone adiponectin is secreted into the circulation by adipocytes and mediates key biological functions, including insulin sensitivity, adipocyte development, and fatty acid oxidation. Adiponectin is also abundant in saliva, where its functions are poorly understood. Here we report that murine taste receptor cells (TRCs) express specific adiponectin receptors and may be a target for salivary adiponectin. This is supported by the presence of all three known adiponectin receptors in transcriptomic data obtained by RNA-seq analysis of purified circumvallate (CV) taste buds. As well, immunohistochemical analysis of murine CV papillae showed that two adiponectin receptors, ADIPOR1 and T-cadherin, are localized to subsets of TRCs. Immunofluorescence for T-cadherin was primarily co-localized with the Type 2 TRC marker phospholipase C ß2, suggesting that adiponectin signaling could impact sweet, bitter, or umami taste signaling. However, adiponectin null mice showed no differences in behavioral lick responsiveness compared with wild-type controls in brief-access lick testing. AAV-mediated overexpression of adiponectin in the salivary glands of adiponectin null mice did result in a small but significant increase in behavioral lick responsiveness to the fat emulsion Intralipid. Together, these results suggest that salivary adiponectin can affect TRC function, although its impact on taste responsiveness and peripheral taste coding remains unclear.


Assuntos
Adiponectina/metabolismo , Receptores de Adiponectina/biossíntese , Papilas Gustativas/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Papilas Gustativas/metabolismo
7.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37878307
8.
FASEB J ; 29(1): 164-72, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342133

RESUMO

Dysregulation of thyroid hormones triiodothyronine and thyroxine (T3/T4) can impact metabolism, body composition, and development. Thus, it is critical to identify novel mechanisms that impact T3/T4 production. We found that type 2 taste receptors (TAS2Rs), which are activated by bitter-tasting compounds such as those found in many foods and pharmaceuticals, negatively regulate thyroid-stimulating hormone (TSH)-dependent Ca(2+) increases and TSH-dependent iodide efflux in thyrocytes. Immunohistochemical Tas2r-dependent reporter expression and real-time PCR analyses reveal that human and mouse thyrocytes and the Nthy-Ori 3-1 human thyrocyte line express several TAS2Rs. Five different agonists for thyrocyte-expressed TAS2Rs reduced TSH-dependent Ca(2+) release in Nthy-Ori 3-1 cells, but not basal Ca(2+) levels, in a dose-dependent manner. Ca(2+) responses were unaffected by 6-n-propylthiouracil, consistent with the expression of an unresponsive variant of its cognate receptor, TAS2R38, in these cells. TAS2R agonists also inhibited basal and TSH-dependent iodide efflux. Furthermore, a common TAS2R42 polymorphism is associated with increased serum T4 levels in a human cohort. Our findings indicate that TAS2Rs couple the detection of bitter-tasting compounds to changes in thyrocyte function and T3/T4 production. Thus, TAS2Rs may mediate a protective response to overingestion of toxic materials and could serve as new druggable targets for therapeutic treatment of hypo- or hyperthyroidism.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Glândula Tireoide/metabolismo , Adulto , Animais , Cálcio/metabolismo , Linhagem Celular , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Ligantes , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Glândula Tireoide/citologia , Hormônios Tireóideos/metabolismo , Tireotropina/metabolismo , Distribuição Tecidual
9.
Semin Cell Dev Biol ; 24(3): 232-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23348523

RESUMO

The peripheral sensory organ of the gustatory system, the taste bud, contains a heterogeneous collection of sensory cells. These taste cells can differ in the stimuli to which they respond and the receptors and other signaling molecules they employ to transduce and encode those stimuli. This molecular diversity extends to the expression of a varied repertoire of bioactive peptides that appear to play important functional roles in signaling taste information between the taste cells and afferent sensory nerves and/or in processing sensory signals within the taste bud itself. Here, we review studies that examine the expression of bioactive peptides in the taste bud and the impact of those peptides on taste functions. Many of these peptides produced in taste buds are known to affect appetite, satiety or metabolism through their actions in the brain, pancreas and other organs, suggesting a functional link between the gustatory system and the neural and endocrine systems that regulate feeding and nutrient utilization.


Assuntos
Peptídeos/metabolismo , Paladar , Animais , Humanos , Transdução de Sinais , Papilas Gustativas/metabolismo
10.
Chem Senses ; 45(4): 231, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32436577
11.
Chem Senses ; 40(4): 223-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25740302

RESUMO

There is uncertainty about the relationship between plasma leptin and sweet taste in mice. Whereas 2 studies have reported that elevations in plasma leptin diminish responsiveness to sweeteners, another found that they enhanced responsiveness to sucrose. We evaluated the impact of plasma leptin on sweet taste in C57BL/6J (B6) and leptin-deficient ob/ob mice. Although mice expressed the long-form leptin receptor (LepRb) selectively in Type 2 taste cells, leptin failed to activate a critical leptin-signaling protein, STAT3, in taste cells. Similarly, we did not observe any impact of intraperitoneal (i.p.) leptin treatment on chorda tympani nerve responses to sweeteners in B6 or ob/ob mice. Finally, there was no effect of leptin treatment on initial licking responses to several sucrose concentrations in B6 mice. We confirmed that basal plasma leptin levels did not exceed 10ng/mL, regardless of time of day, physiological state, or body weight, suggesting that taste cell LepRb were not desensitized to leptin in our studies. Furthermore, i.p. leptin injections produced plasma leptin levels that exceeded those previously reported to exert taste effects. We conclude that any effect of plasma leptin on taste responsiveness to sweeteners is subtle and manifests itself only under specific experimental conditions.


Assuntos
Leptina/sangue , Edulcorantes/farmacologia , Paladar/efeitos dos fármacos , Paladar/fisiologia , Língua/metabolismo , Animais , Injeções Intraperitoneais , Leptina/administração & dosagem , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores para Leptina/metabolismo , Língua/citologia , Língua/efeitos dos fármacos
12.
J Neurosci ; 33(17): 7559-64, 2013 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-23616560

RESUMO

Taste stimuli that evoke different perceptual qualities (e.g., sweet, umami, bitter, sour, salty) are detected by dedicated subpopulations of taste bud cells that use distinct combinations of sensory receptors and transduction molecules. Here, we report that taste stimuli also elicit unique patterns of neuropeptide secretion from taste buds that are correlated with those perceptual qualities. We measured tastant-dependent secretion of glucagon-like peptide-1 (GLP-1), glucagon, and neuropeptide Y (NPY) from circumvallate papillae of Tas1r3(+/+), Tas1r3(+/-) and Tas1r3 (-/-) mice. Isolated tongue epithelia were mounted in modified Ussing chambers, permitting apical stimulation of taste buds; secreted peptides were collected from the basal side and measured by specific ELISAs. Appetitive stimuli (sweet: glucose, sucralose; umami: monosodium glutamate; polysaccharide: Polycose) elicited GLP-1 and NPY secretion and inhibited basal glucagon secretion. Sweet and umami stimuli were ineffective in Tas1r3(-/-) mice, indicating an obligatory role for the T1R3 subunit common to the sweet and umami taste receptors. Polycose responses were unaffected by T1R3 deletion, consistent with the presence of a distinct polysaccharide taste receptor. The effects of sweet stimuli on peptide secretion also required the closing of ATP-sensitive K(+) (KATP) channels, as the KATP channel activator diazoxide inhibited the effects of glucose and sucralose on both GLP-1 and glucagon release. Both sour citric acid and salty NaCl increased NPY secretion but had no effects on GLP-1 or glucagon. Bitter denatonium showed no effects on these peptides. Together, these results suggest that taste stimuli of different perceptual qualities elicit unique patterns of neuropeptide secretion from taste buds.


Assuntos
Neuropeptídeos/metabolismo , Papilas Gustativas/metabolismo , Paladar/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Glutamato de Sódio/farmacologia , Paladar/efeitos dos fármacos , Papilas Gustativas/efeitos dos fármacos
13.
Chem Senses ; 38(5): 391-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23564012

RESUMO

Rodents rely on olfactory stimuli to communicate information between conspecifics that is critical for health and survival. For example, rodents that detect a food odor simultaneously with the social odor carbon disulfide (CS(2)) will acquire a preference for that food. Disruption of the chemosensory transduction cascade in CS(2-)sensitive olfactory sensory neurons (OSNs) that express the receptor guanylyl cyclase type D (GC-D; GC-D+ OSNs) will prevent mice from acquiring these preferences. GC-D+ OSNs also respond to the natriuretic peptide uroguanylin, which is excreted into urine and feces. We analyzed if uroguanylin could also act as a social stimulus to promote the acquisition of food preferences. We found that feces of mice that had eaten odored food, but not unodored food, promoted a strong preference for that food in mice exposed to the feces. Olfactory exploration of uroguanylin presented with a food odor similarly produced a preference that was absent when mice were exposed to the food odor alone. Finally, the acquisition of this preference was dependent on GC-D+ OSNs, as mice lacking GC-D (Gucy2d(-)(/-) mice) showed no preference for the demonstrated food. Together with our previous findings, these results demonstrate that the diverse activators of GC-D+ OSNs elicit a common behavioral result and suggest that this specialized olfactory subsystem acts as a labeled line for a type of associative olfactory learning.


Assuntos
Preferências Alimentares/efeitos dos fármacos , Guanilato Ciclase/metabolismo , Peptídeos Natriuréticos/farmacologia , Neurônios Receptores Olfatórios/efeitos dos fármacos , Receptores de Superfície Celular/metabolismo , Animais , Guanilato Ciclase/deficiência , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios Receptores Olfatórios/enzimologia , Neurônios Receptores Olfatórios/metabolismo , Receptores de Superfície Celular/deficiência
14.
FASEB J ; 26(12): 4827-31, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22964302

RESUMO

We present a novel hypothesis that could explain many off-target effects of diverse pharmaceuticals. Specifically, we propose that any drug with a bitter taste could have unintended actions in the body through stimulation of extraoral type 2 taste receptors (T2Rs). T2Rs were first identified in the oral cavity, where they function as bitter taste receptors. However, recent findings indicate that they are also expressed outside the gustatory system, including in the gastrointestinal and respiratory systems. T2R ligands include a diverse array of natural and synthetic compounds, many of which are toxins. Notably, many pharmaceuticals taste bitter, with compounds such as chloroquine, haloperidol, erythromycin, procainamide, and ofloxacin known to activate T2Rs. Bitter-tasting compounds can have specific physiological effects in T2R-expressing cells. For example, T2Rs are found in some gastrointestinal endocrine cells, including those that secrete the peptide hormones (e.g., ghrelin and glucagon-like peptide-1) in response to stimulation by bitter-tasting compounds. In the respiratory system, stimulation of T2Rs expressed in respiratory epithelia and smooth muscle has been implicated in protective airway reflexes, ciliary beating, and bronchodilation. If our hypothesis is confirmed, it would offer a new paradigm for understanding the off-target actions of diverse drugs and could reveal potential new therapeutic targets.


Assuntos
Boca/metabolismo , Preparações Farmacêuticas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Paladar , Animais , Encéfalo/metabolismo , Monitoramento de Medicamentos/métodos , Trato Gastrointestinal/metabolismo , Humanos , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Isoformas de Proteínas/agonistas , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Sistema Respiratório/metabolismo , Percepção Gustatória/efeitos dos fármacos , Xenobióticos/metabolismo , Xenobióticos/farmacologia
15.
Annu Rev Physiol ; 71: 115-40, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18808328

RESUMO

The mammalian olfactory system senses an almost unlimited number of chemical stimuli and initiates a process of neural recognition that influences nearly every aspect of life. This review examines the organizational principles underlying the recognition of olfactory stimuli. The olfactory system is composed of a number of distinct subsystems that can be distinguished by the location of their sensory neurons in the nasal cavity, the receptors they use to detect chemosensory stimuli, the signaling mechanisms they employ to transduce those stimuli, and their axonal projections to specific regions of the olfactory forebrain. An integrative approach that includes gene targeting methods, optical and electrophysiological recording, and behavioral analysis has helped to elucidate the functional significance of this subsystem organization for the sense of smell.


Assuntos
Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia , Animais , Células Quimiorreceptoras/fisiologia , Humanos , Neurônios Receptores Olfatórios/fisiologia , Células Receptoras Sensoriais/fisiologia , Transdução de Sinais/fisiologia
16.
medRxiv ; 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37034638

RESUMO

Anosmia is common with respiratory virus infections, but loss of taste or chemesthesis is rare. Reports of true taste loss with COVID-19 were viewed skeptically until confirmed by multiple studies. Nasal menthol thresholds are elevated in some with prior COVID-19 infections, but data on oral chemesthesis are lacking. Many patients recover quickly, but precise timing and synchrony of recovery are unclear. Here, we collected broad sensory measures over 28 days, recruiting adults (18-45 years) who were COVID-19 positive or recently exposed (close contacts per U.S. CDC criteria at the time of the study) in the first half of 2021. Participants received nose clips, red commercial jellybeans (Sour Cherry and Cinnamon), and scratch-n-sniff cards (ScentCheckPro). Among COVID-19 cases who entered the study on or before Day 10 of infection, Gaussian Process Regression showed odor identification and odor intensity (two distinct measures of function) each declined relative to controls (close contacts who never developed COVID-19), but effects were larger for intensity than identification. To assess changes during early onset, we identified four COVID-19 cases who enrolled on or prior to Day 1 of their illness â€" this allowed for visualization of baseline ratings, loss, and recovery of function over time. Four controls were matched for age, gender, and race. Variables included sourness and sweetness (Sour Cherry jellybeans), oral burn (Cinnamon jellybeans), mean orthonasal intensity of four odors (ScentCheckPro), and perceived nasal blockage. Data were plotted over 28 days, creating panel plots for the eight cases and controls. Controls exhibited stable ratings over time. By contrast, COVID-19 cases showed sharp deviations over time. No single pattern of taste loss or recovery was apparent, implying different taste qualities might recover at different rates. Oral burn was transiently reduced for some before recovering quickly, suggesting acute loss may be missed in data collected after acute illness ends. Changes in odor intensity or odor identification were not explained by nasal blockage. Collectively, intensive daily testing shows orthonasal smell, oral chemesthesis and taste were each altered by acute COVID-19 infection, and this disruption was dyssynchronous for different modalities, with variable loss and recovery rates across modalities and individuals.

17.
Physiol Behav ; 271: 114331, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37595820

RESUMO

Transient loss of smell is a common symptom of influenza and other upper respiratory infections. Loss of taste is possible but rare with these illnesses, and patient reports of 'taste loss' typically arise from a taste / flavor confusion. Thus, initial reports from COVID-19 patients of loss of taste and chemesthesis (i.e., chemical somatosensation like warming or cooling) were met with skepticism until multiple studies confirmed SARS-CoV-2 infections could disrupt these senses. Many studies have been based on self-report or on single time point assessments after acute illness was ended. Here, we describe intensive longitudinal data over 28 days from adults aged 18-45 years recruited in early 2021 (i.e., prior to the Delta and Omicron SARS-CoV-2 waves). These individuals were either COVID-19 positive or close contacts (per U.S. CDC criteria at the time of the study) in the first half of 2021. Upon enrollment, all participants were given nose clips, blinded samples of commercial jellybeans (Sour Cherry and Cinnamon), and scratch-n-sniff odor identification test cards (ScentCheckPro), which they used for daily assessments. In COVID-19 cases who enrolled on or before Day 10 of infection, Gaussian Process Regression showed two distinct measures of function - odor identification and odor intensity - declined relative to controls (exposed individuals who never developed COVID-19). Because enrollment began upon exposure, some participants became ill only after enrollment, which allowed us to capture baseline ratings, onset of loss, and recovery. Data from these four cases and four age- and sex- matched controls were plotted over 28 days to create panel plots. Variables included mean orthonasal intensity of four odors (ScentCheckPro), perceived nasal blockage, oral burn (Cinnamon jellybeans), and sourness and sweetness (Sour Cherry jellybeans). Controls exhibited stable ratings over time. By contrast, COVID-19 cases showed sharp deviations over time. Changes in odor intensity or odor identification were not explained by nasal blockage. No single pattern of taste loss or recovery was apparent, implying different taste qualities might recover at different rates. Oral burn was transiently reduced for some before recovering quickly, suggesting acute loss may be missed in datasets collected only after illness ends. Collectively, intensive daily testing shows orthonasal smell, oral chemesthesis and taste were each altered by acute SARS-CoV-2 infection. This disruption was dyssynchronous for different modalities, with variable loss and recovery rates across both modalities and individuals.


Assuntos
Ageusia , COVID-19 , Obstrução Nasal , Transtornos do Olfato , Adulto , Humanos , COVID-19/complicações , Olfato , SARS-CoV-2 , Paladar , Ageusia/complicações , Obstrução Nasal/complicações , Distúrbios do Paladar/etiologia , Estudos de Casos e Controles , Transtornos do Olfato/etiologia
18.
Am J Physiol Endocrinol Metab ; 303(4): E464-74, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22669246

RESUMO

The glucose-dependent secretion of the insulinotropic hormone glucagon-like peptide-1 (GLP-1) is a critical step in the regulation of glucose homeostasis. Two molecular mechanisms have separately been suggested as the primary mediator of intestinal glucose-stimulated GLP-1 secretion (GSGS): one is a metabotropic mechanism requiring the sweet taste receptor type 2 (T1R2) + type 3 (T1R3) while the second is a metabolic mechanism requiring ATP-sensitive K(+) (K(ATP)) channels. By quantifying sugar-stimulated hormone secretion in receptor knockout mice and in rats receiving Roux-en-Y gastric bypass (RYGB), we found that both of these mechanisms contribute to GSGS; however, the mechanisms exhibit different selectivity, regulation, and localization. T1R3(-/-) mice showed impaired glucose and insulin homeostasis during an oral glucose challenge as well as slowed insulin granule exocytosis from isolated pancreatic islets. Glucose, fructose, and sucralose evoked GLP-1 secretion from T1R3(+/+), but not T1R3(-/-), ileum explants; this secretion was not mimicked by the K(ATP) channel blocker glibenclamide. T1R2(-/-) mice showed normal glycemic control and partial small intestine GSGS, suggesting that T1R3 can mediate GSGS without T1R2. Robust GSGS that was K(ATP) channel-dependent and glucose-specific emerged in the large intestine of T1R3(-/-) mice and RYGB rats in association with elevated fecal carbohydrate throughout the distal gut. Our results demonstrate that the small and large intestines utilize distinct mechanisms for GSGS and suggest novel large intestine targets that could mimic the improved glycemic control seen after RYGB.


Assuntos
Derivação Gástrica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Papilas Gustativas/metabolismo , Animais , Células Cultivadas , Fezes/química , Frutose/farmacologia , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Glucose/farmacologia , Teste de Tolerância a Glucose , Glibureto/farmacologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Hipoglicemiantes/farmacologia , Íleo/efeitos dos fármacos , Íleo/metabolismo , Insulina/metabolismo , Secreção de Insulina , Intestino Grosso/efeitos dos fármacos , Intestino Grosso/metabolismo , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Canais KATP/metabolismo , Camundongos , Ratos , Sacarose/análogos & derivados , Sacarose/farmacologia , Papilas Gustativas/efeitos dos fármacos
19.
J Nutr ; 142(6): 1134S-41S, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22573784

RESUMO

A remarkable amount of information has emerged in the past decade regarding sweet taste physiology. This article reviews these data, with a particular focus on the elucidation of the sweet taste receptor, its location and actions in taste transduction in the mouth, its nontaste functions in the gastrointestinal tract (e.g., in enteroendocrine cells), and the brain circuitry involved in the sensory processing of sweet taste. Complications in the use of rodents to model human sweet taste perception and responses are also considered. In addition, information relating to low-calorie sweeteners (LCS) is discussed in the context of these issues. Particular consideration is given to the known effects of LCS on enteroendocrine cell function.


Assuntos
Edulcorantes/farmacologia , Percepção Gustatória/fisiologia , Paladar/fisiologia , Animais , Humanos , Modelos Animais , Edulcorantes/química , Papilas Gustativas/fisiologia
20.
Am J Rhinol Allergy ; 36(6): 872-883, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35848564

RESUMO

BACKGROUND: Nasal mucus is proving to be a useful means by which to study the pathogenesis of chronic rhinosinusitis (CRS). Given the increase in publications examining nasal mucus and the lack of a review on this topic, we will focus on this noninvasive approach to studying CRS. Particular attention will be drawn towards inflammatory cytokines and biomarkers and their influence on disease severity. METHODS: A literature review of papers published in English pertaining to nasal mucus was performed using the PubMed database. The search utilized combinations of the following keywords: sinusitis, polyps, sample collection, nasal mucus, or nasal secretion. Studies solely on acute or bacterial sinusitis, allergic rhinitis, or cystic fibrosis were not included. RESULTS: A wide variety of materials and methods have been used to collect nasal mucus. Numerous assay types have been performed with the most common being ELISA, cytometric bead array, and proteomics. Most studies have focused on examining the levels of Th1/Th2 cytokines along with chemokines associated with type 2 immunity. Other factors identified include growth factors, senescence-associated proteins, complement, and antimicrobial defenses have also been identified. Nasal mucus cytokines have proven useful in cluster analysis and predicting postoperative improvement in Sino-nasal Outcome Test (SNOT-22) scores. One limitation of the use of nasal mucus is that some studies have suggested that nasal mucus does not always reflect the tissue microenvironment. CONCLUSIONS: Nasal mucus represents a critical tool by which to examine the sinonasal microenvironment in a noninvasive manner. Unlike studies of tissue, it can be utilized in both surgically and medically managed patients and avoids the trauma of biopsies. However, studies are still needed to determine the most effective method for nasal mucus collection. Studies should also take care to confirm that nasal mucus markers do, in fact, reflect the levels of the product studied in the tissue.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Biomarcadores/metabolismo , Doença Crônica , Citocinas/metabolismo , Humanos , Muco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA