Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 19(1): 47, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35578249

RESUMO

BACKGROUND: Assistive technologies, such as arm prostheses, are intended to improve the quality of life of individuals with physical disabilities. However, certain training and learning is usually required from the user to make these technologies more effective. Moreover, some people can be encouraged to train more through competitive motivation. METHODS: In this study, we investigated if the training for and participation in a competitive event (Cybathlon 2020) could promote behavioral changes in an individual with upper limb amputation (the pilot). We defined behavioral changes as the active time while his prosthesis was actuated, ratio of opposing and simultaneous movements, and the pilot's ability to finely modulate his movement speeds. The investigation was based on extensive home-use data from the period before, during and after the Cybathlon 2020 competition. RESULTS: Relevant behavioral changes were found from both quantitative and qualitative analyses. The pilot's home use of his prosthesis nearly doubled in the period before the Cybathlon, and remained 66% higher than baseline after the competition. Moreover, he improved his speed modulation when controlling his prosthesis, and he learned and routinely operated new movements in the prosthesis (wrist rotation) at home. Additionally, as confirmed by semi-structured interviews, his self-perception of the prosthetic arm and its functionality also improved. CONCLUSIONS: An event like the Cybathlon may indeed promote behavioral changes in how competitive individuals with amputation use their prostheses. Provided that the prosthesis is suitable in terms of form and function for both competition and at-home daily use, daily activities can become opportunities for training, which in turn can improve prosthesis function and create further opportunities for daily use. Moreover, these changes appeared to remain even well after the event, albeit relevant only for individuals who continue using the technology employed in the competition.


Assuntos
Membros Artificiais , Braço , Humanos , Masculino , Motivação , Qualidade de Vida , Autoimagem
2.
Artigo em Inglês | MEDLINE | ID: mdl-38363669

RESUMO

Highly impaired individuals stand to benefit greatly from cutting-edge bionic technology, however concurrent functional deficits may complicate the adaptation of such technology. Here, we present a case in which a visually impaired individual with bilateral burn injury amputation was provided with a novel transradial neuromusculoskeletal prosthesis comprising skeletal attachment via osseointegration and implanted electrodes in nerves and muscles for control and sensory feedback. Difficulties maintaining implant hygiene and donning and doffing the prosthesis arose due to his contralateral amputation, ipsilateral eye loss, and contralateral impaired vision necessitating continuous adaptations to the electromechanical interface. Despite these setbacks, the participant still demonstrated improvements in functional outcomes and the ability to control the prosthesis in various limb positions using the implanted electrodes. Our results demonstrate the importance of a multidisciplinary, iterative, and patient-centered approach to making cutting-edge technology accessible to patients with high levels of impairment.


Assuntos
Membros Artificiais , Biônica , Humanos , Implantação de Prótese , Amputação Cirúrgica , Diazo-Oxo-Norleucina
3.
Sci Rep ; 13(1): 6260, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069299

RESUMO

Residual limbs after amputation present colder temperatures than unaffected contralateral limbs. This temperature asymmetry has been attributed to autonomic and cognitive factors, such as changes in body representation. An ideal limb replacement should restore the body representation and resolve the temperature asymmetry, but conventional prostheses, commonly characterized as disembodied, fail to do so. Neuromusculoskeletal prostheses are a new concept of artificial limbs that directly interface with the user's nerves, muscles, and skeleton, and are operated in daily life by bidirectionally transferring control and somatosensory information. Here, we show that the temperature asymmetry commonly found in people with amputations is resolved when using a neuromusculoskeletal prosthesis but reappears when it is removed. A potential explanation for this phenomenon might be the increased embodiment reported by users of neuromusculoskeletal prostheses, which in turn would suggest unconscious perceptual mechanisms mediating the temperature asymmetry commonly found between intact and residual limbs after amputation.


Assuntos
Amputados , Membros Artificiais , Humanos , Biônica , Amputação Cirúrgica , Extremidades
4.
Sci Transl Med ; 15(704): eabq3665, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437016

RESUMO

Remnant muscles in the residual limb after amputation are the most common source of control signals for prosthetic hands, because myoelectric signals can be generated by the user at will. However, for individuals with amputation higher up the arm, such as an above-elbow (transhumeral) amputation, insufficient muscles remain to generate myoelectric signals to enable control of the lost arm and hand joints, thus making intuitive control of wrist and finger prosthetic joints unattainable. We show that severed nerves can be divided along their fascicles and redistributed to concurrently innervate different types of muscle targets, particularly native denervated muscles and nonvascularized free muscle grafts. We engineered these neuromuscular constructs with implanted electrodes that were accessible via a permanent osseointegrated interface, allowing for bidirectional communication with the prosthesis while also providing direct skeletal attachment. We found that the transferred nerves effectively innervated their new targets as shown by a gradual increase in myoelectric signal strength. This allowed for individual flexion and extension of all five fingers of a prosthetic hand by a patient with a transhumeral amputation. Improved prosthetic function in tasks representative of daily life was also observed. This proof-of-concept study indicates that motor neural commands can be increased by creating electro-neuromuscular constructs using distributed nerve transfers to different muscle targets with implanted electrodes, enabling improved control of a limb prosthesis.


Assuntos
Membros Artificiais , Humanos , Eletrodos Implantados , Músculos , Implantação de Prótese , Mãos
5.
Sci Robot ; 8(83): eadf7360, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37820004

RESUMO

Restoration of sensorimotor function after amputation has remained challenging because of the lack of human-machine interfaces that provide reliable control, feedback, and attachment. Here, we present the clinical implementation of a transradial neuromusculoskeletal prosthesis-a bionic hand connected directly to the user's nervous and skeletal systems. In one person with unilateral below-elbow amputation, titanium implants were placed intramedullary in the radius and ulna bones, and electromuscular constructs were created surgically by transferring the severed nerves to free muscle grafts. The native muscles, free muscle grafts, and ulnar nerve were implanted with electrodes. Percutaneous extensions from the titanium implants provided direct skeletal attachment and bidirectional communication between the implanted electrodes and a prosthetic hand. Operation of the bionic hand in daily life resulted in improved prosthetic function, reduced postamputation, and increased quality of life. Sensations elicited via direct neural stimulation were consistently perceived on the phantom hand throughout the study. To date, the patient continues using the prosthesis in daily life. The functionality of conventional artificial limbs is hindered by discomfort and limited and unreliable control. Neuromusculoskeletal interfaces can overcome these hurdles and provide the means for the everyday use of a prosthesis with reliable neural control fixated into the skeleton.


Assuntos
Qualidade de Vida , Robótica , Humanos , Retroalimentação , Biônica , Titânio , Retroalimentação Sensorial/fisiologia , Eletrodos Implantados
6.
Eur Stroke J ; 8(4): 880-894, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37548025

RESUMO

PURPOSE: To propose a consensus-based definition and framework for motor rehabilitation after stroke. METHODS: An expert European working group reviewed the literature, attaining internal consensus after external feedback. FINDINGS: Motor rehabilitation is defined as a process that engages people with stroke to benefit their motor function, activity capacity and performance in daily life. It is necessary for people with residual motor disability whose goal is to enhance their functioning, independence and participation. Motor rehabilitation operates through learning- and use-dependent mechanisms. The trajectory of motor recovery varies across patients and stages of recovery. Early behavioral restitution of motor function depends on spontaneous biological mechanisms. Further improvements in activities of daily living are achieved by compensations. Motor rehabilitation is guided by regular assessment of motor function and activity using consensus-based measures, including patient-reported outcomes. Results are discussed with the patient and their carers to set personal goals. During motor rehabilitation patients learn to optimize and adapt their motor, sensory and cognitive functioning through appropriately dosed repetitive, goal-oriented, progressive, task- and context-specific training. Motor rehabilitation supports people with stroke to maximize health, well-being and quality of life. The framework describes the International Classification of Functioning, Disability and Health in the context of stroke, describes neurobiological mechanisms of behavioral restitution and compensation, and summarizes recommendations for clinical assessment, prediction tools, and motor interventions with strong recommendations from clinical practice guidelines (2016-2022). CONCLUSIONS: This definition and framework may guide clinical educators, inform clinicians on current recommendations and guidelines, and identify gaps in the evidence base.


Assuntos
Pessoas com Deficiência , Transtornos Motores , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Humanos , Atividades Cotidianas , Reabilitação do Acidente Vascular Cerebral/métodos , Recuperação de Função Fisiológica , Qualidade de Vida , Consenso , Acidente Vascular Cerebral/diagnóstico
7.
Front Hum Neurosci ; 16: 897870, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669202

RESUMO

Background: Upper limb impairment is common after stroke, and many will not regain full upper limb function. Different technologies based on surface electromyography (sEMG) have been used in stroke rehabilitation, but there is no collated evidence on the different sEMG-driven interventions and their effect on upper limb function in people with stroke. Aim: Synthesize existing evidence and perform a meta-analysis on the effect of different types of sEMG-driven interventions on upper limb function in people with stroke. Methods: PubMed, SCOPUS, and PEDro databases were systematically searched for eligible randomized clinical trials that utilize sEMG-driven interventions to improve upper limb function assessed by Fugl-Meyer Assessment (FMA-UE) in stroke. The PEDro scale was used to evaluate the methodological quality and the risk of bias of the included studies. In addition, a meta-analysis utilizing a random effect model was performed for studies comparing sEMG interventions to non-sEMG interventions and for studies comparing different sEMG interventions protocols. Results: Twenty-four studies comprising 808 participants were included in this review. The methodological quality was good to fair. The meta-analysis showed no differences in the total effect, assessed by total FMA-UE score, comparing sEMG interventions to non-sEMG interventions (14 studies, 509 participants, SMD 0.14, P 0.37, 95% CI -0.18 to 0.46, I2 55%). Similarly, no difference in the overall effect was found for the meta-analysis comparing different types of sEMG interventions (7 studies, 213 participants, SMD 0.42, P 0.23, 95% CI -0.34 to 1.18, I2 73%). Twenty out of the twenty-four studies, including participants with varying impairment levels at all stages of stroke recovery, reported statistically significant improvements in upper limb function at post-sEMG intervention compared to baseline. Conclusion: This review and meta-analysis could not discern the effect of sEMG in comparison to a non-sEMG intervention or the most effective type of sEMG intervention for improving upper limb function in stroke populations. Current evidence suggests that sEMG is a promising tool to further improve functional recovery, but randomized clinical trials with larger sample sizes are needed to verify whether the effect on upper extremity function of a specific sEMG intervention is superior compared to other non-sEMG or other type of sEMG interventions.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 4611-4614, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34892241

RESUMO

The ability to measure functional performance of a prosthesis is hindered by the lack of an equalized mechanical platform to test from. Researchers and designers seeking to increase the pace of development have attempted novel mounts for prostheses so these can be used by able-bodied participants. Termed "bypass sockets", these can increase the sampling pool during prosthetic evaluations. Here, we present an open-source, 3D printable prosthetic bypass socket for below-elbow (transradial) amputations. Methods to quantify the effectiveness of bypass sockets are limited and therefore we propose the use of a validated and clinically relevant evaluation tool, the Assessment of Capacity for Myoelectric Control (ACMC). We performed the ACMC in six able-bodied subjects with limited experience with myoelectric prostheses and found the participants to be rated from "non-" to "somewhat capable" using the ACMC interpretation scale. In addition, we conducted a secondary evaluation consisting of a subset of tasks of the Cybathlon competition aimed at eliciting fatigue in the participants. All participants completed said tasks, suggesting that the bypass socket is suitable for extended use during prosthesis development.Clinical Relevance- The design and validation of the bypass socket presented here can facilitate the development of upper limb prosthetic systems.


Assuntos
Membros Artificiais , Amputação Cirúrgica , Humanos , Desenho de Prótese , Implantação de Prótese , Extremidade Superior
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA