Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Biotechnol ; 17(4): e14460, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38635191

RESUMO

Aromatic compounds are used in pharmaceutical, food, textile and other industries. Increased demand has sparked interest in exploring biotechnological approaches for their sustainable production as an alternative to chemical synthesis from petrochemicals or plant extraction. These aromatic products may be toxic to microorganisms, which complicates their production in cell factories. In this study, we analysed the toxicity of multiple aromatic compounds in common production hosts. Next, we screened a subset of toxic aromatics, namely 2-phenylethanol, 4-tyrosol, benzyl alcohol, berberine and vanillin, against transporter deletion libraries in Escherichia coli and Saccharomyces cerevisiae. We identified multiple transporter deletions that modulate the tolerance of the cells towards these compounds. Lastly, we engineered transporters responsible for 2-phenylethanol tolerance in yeast and showed improved 2-phenylethanol bioconversion from L-phenylalanine, with deletions of YIA6, PTR2 or MCH4 genes improving titre by 8-12% and specific yield by 38-57%. Our findings provide insights into transporters as targets for improving the production of aromatic compounds in microbial cell factories.


Assuntos
Álcool Feniletílico , Saccharomyces cerevisiae , Álcool Benzílico , Biotecnologia , Escherichia coli , Proteínas de Membrana Transportadoras , Compostos Orgânicos
2.
Nat Struct Mol Biol ; 31(8): 1232-1242, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38698207

RESUMO

Vortioxetine (VTX) is a recently approved antidepressant that targets a variety of serotonin receptors. Here, we investigate the drug's molecular mechanism of operation at the serotonin 5-HT3 receptor (5-HT3R), which features two properties: VTX acts differently on rodent and human 5-HT3R, and VTX appears to suppress any subsequent response to agonists. Using a combination of cryo-EM, electrophysiology, voltage-clamp fluorometry and molecular dynamics, we show that VTX stabilizes a resting inhibited state of the mouse 5-HT3R and an agonist-bound-like state of human 5-HT3R, in line with the functional profile of the drug. We report four human 5-HT3R structures and show that the human receptor transmembrane domain is intrinsically fragile. We also explain the lack of recovery after VTX administration via a membrane partition mechanism.


Assuntos
Antidepressivos , Microscopia Crioeletrônica , Receptores 5-HT3 de Serotonina , Vortioxetina , Vortioxetina/farmacologia , Vortioxetina/química , Humanos , Receptores 5-HT3 de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/química , Animais , Camundongos , Antidepressivos/farmacologia , Antidepressivos/química , Piperazinas/farmacologia , Piperazinas/química , Sulfetos/química , Sulfetos/farmacologia , Simulação de Dinâmica Molecular , Células HEK293
3.
Antibiotics (Basel) ; 11(8)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36009997

RESUMO

Antibiotic resistance is a major global healthcare issue. Antibiotic compounds cross the bacterial cell membrane via membrane transporters, and a major mechanism of antibiotic resistance is through modification of the membrane transporters to increase the efflux or reduce the influx of antibiotics. Targeting these transporters is a potential avenue to combat antibiotic resistance. In this study, we used an automated screening pipeline to evaluate the growth of a library of 447 Escherichia coli transporter knockout strains exposed to sub-inhibitory concentrations of 18 diverse antimicrobials. We found numerous knockout strains that showed more resistant or sensitive phenotypes to specific antimicrobials, suggestive of transport pathways. We highlight several specific drug-transporter interactions that we identified and provide the full dataset, which will be a useful resource in further research on antimicrobial transport pathways. Overall, we determined that transporters are involved in modulating the efficacy of almost all the antimicrobial compounds tested and can, thus, play a major role in the development of antimicrobial resistance.

4.
ACS Synth Biol ; 9(12): 3228-3235, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33231069

RESUMO

Affordable and automated cloning platforms are essential to many synthetic biology studies. However, the traditional E. coli-based cloning is a major bottleneck as it requires heat shock or electroporation implemented in the robotic workflows. To overcome this problem, we explored bacterial natural transformation for automatic DNA cloning and engineering. Recombinant plasmids are efficiently generated from Gibson or overlap extension PCR (OE-PCR) products by simply adding the DNA into Acinetobacter baylyi ADP1 cultures. No DNA purification, competence induction, or special equipment is required. Up to 10,000 colonies were obtained per microgram of DNA, while the number of false positive colonies was low. We cloned and engineered 21 biosynthetic gene clusters (BGCs) of various types, with length from 1.5 to 19 kb and GC content from 35% to 72%. One of them, a nucleoside BGC, showed antibacterial activity. Furthermore, the method was easily transferred to a low-cost benchtop robot with consistent cloning efficiency. Thus, this automatic natural transformation (ANT) cloning provides an easy, robust, and affordable platform for high throughput DNA engineering.


Assuntos
Acinetobacter/metabolismo , Clonagem Molecular , Transformação Genética/fisiologia , Acinetobacter/genética , Automação , Produtos Biológicos/metabolismo , DNA/química , DNA/metabolismo , Escherichia coli/genética , Família Multigênica/genética , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA