Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Cereb Cortex ; 32(7): 1350-1364, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-34470044

RESUMO

Neurotrophins are secreted proteins that control survival, differentiation, and synaptic plasticity. While mature neurotrophins regulate these functions via tyrosine kinase signaling (Trk), uncleaved pro-neurotrophins bind preferentially to the p75 neurotrophin receptor (p75NTR) and often exert opposite effects to those of mature neurotrophins. In the amygdala, brain-derived neurotrophic factor (BDNF) enables long-term potentiation as well as fear and fear extinction learning. In the present study, we focused on the impact of mature BDNF and proBDNF signaling on long-term depression (LTD) in the lateral amygdala (LA). Hence, we conducted extracellular field potential recordings in an in vitro slice preparation and recorded LTD in cortical and thalamic afferents to the LA. LTD was unchanged by acute block of BDNF/TrkB signaling. In contrast, LTD was inhibited by blocking p75NTR signaling, by disinhibition of the proteolytic cleavage of proBDNF into mature BDNF, and by preincubation with a function-blocking anti-proBDNF antibody. Since LTD-like processes in the amygdala are supposed to be related to fear extinction learning, we locally inhibited p75NTR signaling in the amygdala during or after fear extinction training, resulting in impaired fear extinction memory. Overall, these results suggest that in the amygdala proBDNF/p75NTR signaling plays a pivotal role in LTD and fear extinction learning.


Assuntos
Extinção Psicológica , Medo , Tonsila do Cerebelo/metabolismo , Animais , Extinção Psicológica/fisiologia , Medo/fisiologia , Aprendizagem/fisiologia , Camundongos , Plasticidade Neuronal
2.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484392

RESUMO

Brain-derived neurotrophic factor (BDNF) has previously been shown to play an important role in glutamatergic synaptic plasticity in the amygdala, correlating with cued fear learning. While glutamatergic neurotransmission is facilitated by BDNF signaling in the amygdala, its mechanism of action at inhibitory synapses in this nucleus is far less understood. We therefore analyzed the impact of chronic BDNF depletion on GABAA-mediated synaptic transmission in BDNF heterozygous knockout mice (BDNF+/-). Analysis of miniature and evoked inhibitory postsynaptic currents (IPSCs) in the lateral amygdala (LA) revealed neither pre- nor postsynaptic differences in BDNF+/- mice compared to wild-type littermates. In addition, long-term potentiation (LTP) of IPSCs was similar in both genotypes. In contrast, facilitation of spontaneous IPSCs (sIPSCs) by norepinephrine (NE) was significantly reduced in BDNF+/- mice. These results argue against a generally impaired efficacy and plasticity at GABAergic synapses due to a chronic BDNF deficit. Importantly, the increase in GABAergic tone mediated by NE is reduced in BDNF+/- mice. As release of NE is elevated during aversive behavioral states in the amygdala, effects of a chronic BDNF deficit on GABAergic inhibition may become evident in response to states of high arousal, leading to amygdala hyper-excitability and impaired amygdala function.


Assuntos
Tonsila do Cerebelo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Potenciação de Longa Duração/fisiologia , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Potenciação de Longa Duração/genética , Camundongos , Camundongos Knockout , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
3.
Neurosignals ; 20(1): 35-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22094222

RESUMO

The mechanisms underlying spontaneous burst activity (SBA), appearing in networks of embryonic cortical neurons at the end of the first week in vitro, remain elusive. Here we investigated the contribution of the hyperpolarization-activated cation current (I(h)) to SBA in cortical cultures of GAD67-GFP mice. I(h) current could be detected in GFP-positive large GABAergic interneurons (L-INs) and glutamatergic principal neurons (PNs) as early as DIV 5. Under current-clamp conditions, blockers of I(h) current, ZD7288 and Cs⁺, abolished the voltage sag and rebound depolarization. ZD7288 induced a hyperpolarization concomitant with an increase in the membrane input resistance in L-INs and PNs. Voltage-clamp recordings revealed I(h) as slowly activating inward current with a reversal potential close to -50 mV and a mid-activation point around -90 mV. Both, ZD7288 (1-10 µM) and Cs⁺ (1-2 mM) reduced SBA, spontaneous activity-driven Ca²âº transients, and frequency as well as amplitude of miniature GABAergic postsynaptic currents. Immunocytochemistry and Western blot demonstrated that HCN1 and HCN2 were the prevalent isoforms of HCN channels expressed in L-INs and PNs. These results suggest an important contribution of HCN channels to the maintenance of SBA in embryonic cortical cultures.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canais Iônicos/fisiologia , Neocórtex/embriologia , Neocórtex/crescimento & desenvolvimento , Rede Nervosa/embriologia , Rede Nervosa/crescimento & desenvolvimento , Canais de Potássio/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Rede Nervosa/citologia , Condução Nervosa/fisiologia , Isoformas de Proteínas/fisiologia
4.
Proc Natl Acad Sci U S A ; 106(22): 9093-8, 2009 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-19458041

RESUMO

Phosphatidylinositol 4-OH kinase IIIbeta (PI-4Kbeta) is involved in the regulated local synthesis of phospholipids that are crucial for trans-Golgi network (TGN)-to-plasma membrane trafficking. In this study, we show that the calcium sensor proteins calneuron-1 and calneuron-2 physically associate with PI-4Kbeta, inhibit the enzyme profoundly at resting and low calcium levels, and negatively interfere with Golgi-to-plasma membrane trafficking. At high calcium levels this inhibition is released and PI-4Kbeta is activated via a preferential association with neuronal calcium sensor-1 (NCS-1). In accord to its supposed function as a filter for subthreshold Golgi calcium transients, neuronal overexpression of calneuron-1 enlarges the size of the TGN caused by a build-up of vesicle proteins and reduces the number of axonal Piccolo-Bassoon transport vesicles, large dense core vesicles that carry a set of essential proteins for the formation of the presynaptic active zone during development. A corresponding protein knockdown has the opposite effect. The opposing roles of calneurons and NCS-1 provide a molecular switch to decode local calcium transients at the Golgi and impose a calcium threshold for PI-4Kbeta activity and vesicle trafficking.


Assuntos
1-Fosfatidilinositol 4-Quinase/antagonistas & inibidores , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Rede trans-Golgi/metabolismo , 1-Fosfatidilinositol 4-Quinase/metabolismo , Animais , Células COS , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Chlorocebus aethiops , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Transporte Proteico , Ratos
5.
J Neurosci ; 29(49): 15397-409, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20007464

RESUMO

Cytotoxic CD8(+) T cells are considered important effector cells contributing to neuronal damage in inflammatory and degenerative CNS disorders. Using time-lapse video microscopy and two-photon imaging in combination with whole-cell patch-clamp recordings, we here show that major histocompatibility class I (MHC I)-restricted neuronal antigen presentation and T cell receptor specificity determine CD8(+) T-cell locomotion and neuronal damage in culture and hippocampal brain slices. Two separate functional consequences result from a direct cell-cell contact between antigen-presenting neurons and antigen-specific CD8(+) T cells. (1) An immediate impairment of electrical signaling in single neurons and neuronal networks occurs as a result of massive shunting of the membrane capacitance after insertion of channel-forming perforin (and probably activation of other transmembrane conductances), which is paralleled by an increase of intracellular Ca(2+) levels (within <10 min). (2) Antigen-dependent neuronal apoptosis may occur independently of perforin and members of the granzyme B cluster (within approximately 1 h), suggesting that extracellular effects can substitute for intracellular delivery of granzymes by perforin. Thus, electrical silencing is an immediate consequence of MHC I-restricted interaction of CD8(+) T cells with neurons. This mechanism is clearly perforin-dependent and precedes, but is not causally linked, to neuronal cell death.


Assuntos
Antígenos CD8/metabolismo , Comunicação Celular/fisiologia , Neurônios/fisiologia , Perforina/metabolismo , Linfócitos T/fisiologia , Animais , Cálcio/metabolismo , Morte Celular/fisiologia , Movimento Celular/fisiologia , Células Cultivadas , Capacitância Elétrica , Genes MHC Classe I/fisiologia , Granzimas/genética , Granzimas/metabolismo , Hipocampo/fisiologia , Técnicas In Vitro , Espaço Intracelular/fisiologia , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vias Neurais/fisiologia , Perforina/genética , Fatores de Tempo
6.
Eur J Neurosci ; 31(3): 439-49, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20105233

RESUMO

Neuronal Ca(2+) channels are rapidly inactivated by a mechanism that is termed Ca(2+)-dependent inactivation (CDI). In this study we investigated the influence of intracellular Ca(2+) release on CDI of high-voltage-activated Ca(2+) channels in rat thalamocortical relay neurons by combining voltage-clamp, Ca(2+) imaging and immunological techniques. Double-pulse protocols revealed CDI, which depended on the length of the conditioning pulses. Caffeine caused a concentration-dependent increase in CDI that was accompanied by an increase in the duration of Ca(2+) transients. Inhibition of ryanodine receptors and endoplasmic Ca(2+) pumps (by thapsigargin or cyclopiazonic acid) resulted in a reduction of CDI. In contrast, inhibition of inositol 1,4,5-tris-phosphate receptors by intracellular application of 2-aminoethoxy diphenyl borate or heparin did not influence CDI. The block of transient receptor potential channels by extracellular application of 2-aminoethoxy diphenyl borate, however, resulted in a significant reduction of CDI. The central role of L-type Ca(2+) channels was emphasized by the near-complete block of CDI by nifedipine, an effect only surpassed when Ca(2+) was replaced by Ba(2+) and chelated by 1,2-bis(o-aminophenoxy)ethane-N,N,N',N',-tetraacetic acid (BAPTA). Trains of action potential-like stimuli induced a strong reduction in high-voltage-activated Ca(2+) current amplitude, which was significantly reduced when intracellular Ca(2+) stores were made inoperative by thapsigargin or Ba(2+)/BAPTA. Western blotting revealed expression of L-type Ca(2+) channels in thalamic and hippocampal tissue but not liver tissue. In summary, these results suggest a cross-signalling between L-type Ca(2+) channels and ryanodine receptors that controls the amount of Ca(2+) influx during neuronal activity.


Assuntos
Vias Aferentes/metabolismo , Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Córtex Cerebral/citologia , Neurônios/fisiologia , Tálamo/citologia , Animais , Compostos de Boro/metabolismo , Bloqueadores dos Canais de Cálcio/metabolismo , Quelantes/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/metabolismo , Inibidores Enzimáticos/metabolismo , Ativação do Canal Iônico/fisiologia , Neurônios/citologia , Nifedipino/metabolismo , Técnicas de Patch-Clamp , Ratos , Ratos Long-Evans , Rianodina/metabolismo , Tapsigargina/metabolismo
7.
Exp Cell Res ; 315(1): 50-66, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18992240

RESUMO

The bone marrow represents an easy accessible source of adult stem cells suitable for various cell based therapies. Several studies in recent years suggested the existence of pluripotent stem cells within bone marrow stem cells (BMSC) expressing marker proteins of both embryonic and tissue committed stem cells. These subpopulations were referred to as MAPC, MIAMI and VSEL-cells. Here we describe SD-BMSC (serumdeprivation-induced BMSC) which are induced as a distinct subpopulation after complete serumdeprivation. SD-BMSC are generated from small-sized nestin-positive BMSC (S-BMSC) organized as round-shaped cells in the top layer of BMSC-cultures. The generation of SD-BMSC is caused by a selective proliferation of S-BMSC and accompanied by changes in both morphology and gene expression. SD-BMSC up-regulate not only markers typical for neural stem cells like nestin and GFAP, but also proteins characteristic for embryonic cells like Oct4 and SOX2. We hypothesize, that SD-BMSC like MAPC, MIAMI and VSEL-cells represent derivatives from a single pluripotent stem cell fraction within BMSC exhibiting characteristics of embryonic and tissue committed stem cells. The complete removal of serum might offer a simple way to specifically enrich this fraction of pluripotent embryonic like stem cells in BMSC cultures.


Assuntos
Células da Medula Óssea/citologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , Soro/metabolismo , Animais , Biomarcadores/metabolismo , Células da Medula Óssea/metabolismo , Polaridade Celular , Proliferação de Células , Forma Celular , Células Cultivadas , Estruturas Celulares/metabolismo , Fenômenos Eletrofisiológicos , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Proteínas de Filamentos Intermediários/metabolismo , Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Ratos , Ratos Sprague-Dawley , Subunidade beta da Proteína Ligante de Cálcio S100 , Proteínas S100/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo
8.
J Biomed Mater Res B Appl Biomater ; 107(6): 1806-1813, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30508321

RESUMO

The reasons for the high number of loosened metal-on-metal (MoM) hip implants are still not fully understood. Hypoxia-inducible factor 1 (HIF-1) mediated signaling pathways, which normally modulate tissue metabolism under hypoxic circumstances, could be triggered by metallic wear debris and influence bone metabolism favoring osteolysis. This may lead to early loosening of the orthopedic implants. Immunhistochemical staining of periprosthetic tissues of failed artificial hip implants showed that the concentration of HIF-1α in the surrounding tissues of failed MoM hip implants was significantly higher in comparison to failed metal-on-polyethylene (MoP) hip implants and osteoarthritic tissues. Therefore, we examined the Co2+ -uptake mechanisms and the influence of Co2+ uptake on HIF-1α stabilization. Based on cobalt mediated quenching effects, calcium imaging experiments using fura-2 showed a concentration-dependent cobalt influx in MG-63 cells, which could be inhibited by the unspecific TRPM7 channel inhibitor 2-APB (20 µM) and TRPM7 specific siRNA. Western blots confirmed a dose dependent increase of HIF-1α upon stimulation with Co2+ . This effect could be abrogated by inhibition of cobalt influx using 2-APB. This study shows that chemical hypoxia originating from HIF-1α upregulation within the periprosthetic tissue is related to cobalt wear debris and highlights TRPM7 as an important key mediator in this context. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1806-1813, 2019.


Assuntos
Cobalto/farmacocinética , Regulação da Expressão Gênica , Prótese de Quadril , Próteses Articulares Metal-Metal , Osteoblastos/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Canais de Cátion TRPM/biossíntese , Hipóxia Celular , Linhagem Celular , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese
9.
Mol Neurobiol ; 56(10): 6833-6855, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30929164

RESUMO

Brain-derived neurotrophic factor (BDNF) is a secreted messenger molecule that is crucial for neuronal function and induction of synaptic plasticity. Although altered availability of BDNF underlies many neurological deficits and neurodegenerative disorders, secretion dynamics of endogenous BDNF are unexplored. We generated a BDNF-GFP knock-in (KiBE) mouse, in which GFP-labeled BDNF is expressed under the control of the unaltered endogenous mouse BDNF gene regulatory elements. This KiBE mouse model enables for the first time live cell imaging analysis of endogenous BDNF dynamics. We show that BDNF-GFP release and biological activity in vivo are unaffected by the GFP tag, since homozygous KiBE mice, which lack wild-type BDNF, are healthy and have a normal life expectancy. STED superresolution microscopy shows that 70% of BDNF-GFP vesicles in KiBE mouse neurites are localized in dendrites, being typically 200 nm away from synaptic release sites. Live cell imaging in hippocampal slices also reveals prominent targeting of endogenous BDNF-GFP vesicles to dendrites. Fusion pore opening and cargo release of dendritic BDNF vesicles start within 30 s after a strong depolarizing stimulus and continue for > 100 s thereafter, revealing an astonishingly delayed and prolonged release of endogenous BDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Dendritos/metabolismo , Exocitose , Técnicas de Introdução de Genes , Proteínas de Fluorescência Verde/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Axônios/metabolismo , Células Cultivadas , Cromossomos de Mamíferos/genética , Marcação de Genes , Genoma , Hipocampo/metabolismo , Camundongos
10.
Nat Neurosci ; 21(7): 952-962, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950668

RESUMO

Functional neuroanatomy of Pavlovian fear has identified neuronal circuits and synapses associating conditioned stimuli with aversive events. Hebbian plasticity within these networks requires additional reinforcement to store particularly salient experiences into long-term memory. Here we have identified a circuit that reciprocally connects the ventral periaqueductal gray and dorsal raphe region with the central amygdala and that gates fear learning. We found that ventral periaqueductal gray and dorsal raphe dopaminergic (vPdRD) neurons encode a positive prediction error in response to unpredicted shocks and may reshape intra-amygdala connectivity via a dopamine-dependent form of long-term potentiation. Negative feedback from the central amygdala to vPdRD neurons might limit reinforcement to events that have not been predicted. These findings add a new module to the midbrain dopaminergic circuit architecture underlying associative reinforcement learning and identify vPdRD neurons as a critical component of Pavlovian fear conditioning. We propose that dysregulation of vPdRD neuronal activity may contribute to fear-related psychiatric disorders.


Assuntos
Aprendizagem por Associação/fisiologia , Neurônios Dopaminérgicos/fisiologia , Medo/fisiologia , Tegmento Mesencefálico/fisiologia , Animais , Comportamento Animal/fisiologia , Condicionamento Clássico/fisiologia , Potenciação de Longa Duração/fisiologia , Masculino , Camundongos , Vias Neurais/fisiologia , Substância Cinzenta Periaquedutal/citologia , Substância Cinzenta Periaquedutal/fisiologia , Tegmento Mesencefálico/citologia
11.
PLoS One ; 13(3): e0192652, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29513687

RESUMO

The possibility to generate cardiomyocytes from pluripotent stem cells in vitro has enormous significance for basic research, disease modeling, drug development and heart repair. The concept of heart muscle reconstruction has been studied and optimized in the rat model using rat primary cardiovascular cells or xenogeneic pluripotent stem cell derived-cardiomyocytes for years. However, the lack of rat pluripotent stem cells (rPSCs) and their cardiovascular derivatives prevented the establishment of an authentic clinically relevant syngeneic or allogeneic rat heart regeneration model. In this study, we comparatively explored the potential of recently available rat embryonic stem cells (rESCs) and induced pluripotent stem cells (riPSCs) as a source for cardiomyocytes (CMs). We developed feeder cell-free culture conditions facilitating the expansion of undifferentiated rPSCs and initiated cardiac differentiation by embryoid body (EB)-formation in agarose microwell arrays, which substituted the robust but labor-intensive hanging drop (HD) method. Ascorbic acid was identified as an efficient enhancer of cardiac differentiation in both rPSC types by significantly increasing the number of beating EBs (3.6 ± 1.6-fold for rESCs and 17.6 ± 3.2-fold for riPSCs). These optimizations resulted in a differentiation efficiency of up to 20% cTnTpos rPSC-derived CMs. CMs showed spontaneous contractions, expressed cardiac markers and had typical morphological features. Electrophysiology of riPSC-CMs revealed different cardiac subtypes and physiological responses to cardio-active drugs. In conclusion, we describe rPSCs as a robust source of CMs, which is a prerequisite for detailed preclinical studies of myocardial reconstruction in a physiologically and immunologically relevant small animal model.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Corpos Embrioides/citologia , Células Alimentadoras , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/citologia , Ratos Endogâmicos F344 , Reprodutibilidade dos Testes
12.
Neuropharmacology ; 53(3): 431-46, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17675191

RESUMO

Channel blocking, anti-oscillatory, and anti-epileptic effects of clinically used anti-absence substances (ethosuximide, valproate) and the T-type Ca2+ current (IT) blocker mibefradil were tested by analyzing membrane currents in acutely isolated local circuit interneurons and thalamocortical relay (TC) neurons, slow intrathalamic oscillations in brain slices, and spike and wave discharges (SWDs) occurring in vivo in Wistar Albino Glaxo rats from Rijswijk (WAG/Rij). Substance effects in vitro were compared between WAG/Rij and a non-epileptic control strain, the ACI rats. Ethosuximide (ETX) and valproate were found to block IT in acutely isolated thalamic neurons. Block of IT by therapeutically relevant ETX concentrations (0.25-0.75 mM) was stronger in WAG/Rij, although the maximal effect at saturating concentrations (>or=10 mM) was stronger in ACI. Ethosuximide delayed the onset of the low threshold Ca2+ spike (LTS) of neurons recorded in slice preparations. Mibefradil (>or=2 microM) completely blocked IT and the LTS, dampened evoked thalamic oscillations, and attenuated SWDs in vivo. Computational modeling demonstrated that the complete effect of ETX can be replicated by a sole reduction of IT. However, the necessary degree of IT reduction was not induced by therapeutically relevant ETX concentrations. A combined reduction of IT, the persistent sodium current, and the Ca2+ activated K+ current resulted in an LTS alteration resembling the experimental observations. In summary, these results support the hypothesis of IT reduction as part of the mechanism of action of anti-absence drugs and demonstrate the ability of a specific IT antagonist to attenuate rhythmic burst firing and SWDs.


Assuntos
Anticonvulsivantes/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo T/fisiologia , Epilepsia Tipo Ausência/patologia , Interneurônios/efeitos dos fármacos , Tálamo/patologia , Animais , Animais Recém-Nascidos , Anticonvulsivantes/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Eletroencefalografia , Epilepsia Tipo Ausência/tratamento farmacológico , Etossuximida/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Mibefradil/farmacologia , Técnicas de Patch-Clamp/métodos , Ratos , Ratos Endogâmicos ACI
13.
J Neurosci ; 25(43): 9871-82, 2005 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-16251434

RESUMO

The role of hyperpolarization-activated, cyclic nucleotide-modulated (HCN) channel isoforms and hyperpolarization-activated cation current (Ih) for seizure-related burst firing in thalamocortical (TC) neurons was investigated in a rat genetic model of absence epilepsy [Wistar Albino Glaxo rats, bred in Rijswijk (WAG/Rij)]. Burst discharges in TC neurons locked to seizure activity in vivo were prolonged during blockade of Ih by Cs+ and ZD7288 (4-ethylphenylamino-1,2-dimethyl-6-methylaminopyrimidinium chloride). In vitro analyses revealed a hyperpolarizing shift of half-maximal Ih activation (Vh) in WAG/Rij (Vh = -93.2 mV) compared with nonepileptic controls [August x Copenhagen-Irish (ACI) (Vh = -88.0 mV)]. This effect is explained by a shift of the responsiveness of Ih to cAMP toward higher concentrations in TC neurons from WAG/Rij, as revealed by application of 8-bromo-cAMP and the phosphodiesterase inhibitor IBMX. During blockade of adenylyl cyclase activity, Ih activation was similar in the two strains, whereas the difference in cAMP responsiveness persisted, thereby voting against different ambient cAMP levels between strains. Increasing the intracellular cAMP level and shifting Ih activation led to a change from burst to tonic firing mode in WAG/Rij but not in ACI rats. Furthermore, HCN1 expression was significantly increased on mRNA and protein levels, with no changes in HCN2-4 expression. In conclusion, there is an increase in HCN1 expression in the epileptic thalamus, associated with a decrease in cAMP responsiveness of Ih in TC neurons and resulting impairment to control the shift from burst to tonic firing, which, in turn, will prolong burst activity after recruitment of Ih during absence seizures.


Assuntos
Córtex Cerebral/citologia , Epilepsia Tipo Ausência/metabolismo , Canais Iônicos/metabolismo , Neurônios/metabolismo , Tálamo/citologia , 1-Metil-3-Isobutilxantina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/farmacologia , Potenciais de Ação/efeitos dos fármacos , Adenina/análogos & derivados , Adenina/farmacologia , Animais , Northern Blotting/métodos , Césio/farmacologia , Cloretos/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Interações Medicamentosas , Estimulação Elétrica/métodos , Eletroencefalografia/métodos , Inibidores Enzimáticos/farmacologia , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/fisiopatologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Microinjeções , Técnicas de Patch-Clamp/métodos , Canais de Potássio , Isoformas de Proteínas/metabolismo , Pirimidinas/farmacologia , RNA Mensageiro/biossíntese , Ratos , Ratos Mutantes , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
14.
J Neurosci ; 22(3): 718-27, 2002 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-11826101

RESUMO

Postsynaptic and presynaptic effects of nociceptin/orphanin FQ (N/OFQ), the endogenous ligand of the opioid-like orphan receptor, were investigated in an in vitro slice preparation of the rat thalamic reticular nucleus (NRT) and ventrobasal complex (VB). In NRT as well as VB, all tested neurons developed an outward current on application of 1 micrometer N/OFQ. Basic properties of the N/OFQ-induced current included inward rectification, dependence on extracellular K(+), reduction by 100 micrometer Ba(+), antagonistic effect of [Nphe(1)]nociceptin(1-13)NH(2), and sensitivity to internal GDP-beta-S. Miniature IPSCs (mIPSCs) mediated by GABA(A) receptors in VB neurons were not affected by 1 micrometer N/OFQ. In addition, paired-pulse depression of evoked IPSCs was unchanged, indicating a lack of presynaptic effects. By comparison, N/OFQ application resulted in a reduction in frequency of miniature EPSCs (mEPSCs) in a subpopulation of NRT neurons, whereas paired-pulse facilitation of evoked EPSCs was not altered. In either nucleus, current-clamp experiments revealed a hyperpolarization and associated decrease in input resistance in response to N/OFQ. Although N/OFQ had no measurable effect on calcium-mediated burst activity evoked by depolarizing steps from hyperpolarized values of the membrane potential, rebound bursts on relief of hyperpolarizing current steps were decreased. Slow thalamic oscillations induced in vitro by extracellular stimulation were dampened by N/OFQ in VB and NRT, as seen by delayed onset of rhythmic multiple-unit activity and reduction in amplitude and duration. We conclude that N/OFQ reduces the excitability of NRT and VB neurons predominantly through an increase of a G-protein-coupled inwardly rectifying K(+) conductance.


Assuntos
Relógios Biológicos/fisiologia , Rede Nervosa/fisiologia , Peptídeos Opioides/farmacologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Relógios Biológicos/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/classificação , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Periodicidade , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Long-Evans , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tálamo/efeitos dos fármacos , Nociceptina
15.
J Neurosci ; 23(16): 6460-9, 2003 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-12878686

RESUMO

The thalamocortical network is characterized by rhythmic burst activity during natural sleep and tonic single-spike activity during wakefulness. The change between these two activity modes is partially governed by transmitters acting on leak K+ currents in the thalamus, although the nature of the constituting ion channels is not yet known. In the present study, the contribution of members of the two-pore domain K+ channel family to the leak current was investigated using whole-cell patch-clamp techniques and molecular biological techniques. RT-PCR and in situ hybridization revealed the expression of TWIK-related acid-sensitive K+ channel 1 (TASK 1) and TASK3 channels in the rat dLGN. Voltage-clamp recordings of thalamocortical relay neurons in slice preparations demonstrated the existence of a current component sensitive to the TASK channel blocker bupivacaine, which reversed at the presumed K+ equilibrium potential, showed outward rectification, and contributed approximately 40% to the standing outward current at depolarized values of the membrane potential (-28 mV). The pharmacological profile was indicative of TASK channels, in that the current was sensitive to changes in extracellular pH, reduced by muscarine and increased by halothane, and these effects were occluded by a near-maximal action of bupivacaine. Pharmacological manipulation of this current under current-clamp conditions resulted in a shift between burst and tonic firing modes. It is concluded that TASK1 and TASK3 channels contribute to the muscarine- and halothane-sensitive conductance in thalamocortical relay neurons, thereby contributing to the change in the activity mode of thalamocortical networks observed during the sleep-wake cycle and on application of inhalational anesthetics.


Assuntos
Proteínas do Tecido Nervoso/metabolismo , Neurônios/fisiologia , Canais de Potássio de Domínios Poros em Tandem , Canais de Potássio/metabolismo , Tálamo/fisiologia , Anestésicos Inalatórios/farmacologia , Animais , Bário/farmacologia , Bupivacaína/farmacologia , Corpos Geniculados/metabolismo , Halotano/farmacologia , Hibridização In Situ , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio/biossíntese , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/genética , Ratos , Ratos Long-Evans , Receptores Muscarínicos/biossíntese , Receptores Muscarínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sono/fisiologia , Tálamo/citologia , Tálamo/metabolismo , Vias Visuais/fisiologia , Vigília/fisiologia
16.
Front Cell Neurosci ; 8: 323, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25426021

RESUMO

BDNF and nitric oxide signaling both contribute to plasticity at glutamatergic synapses. However, the role of combined signaling of both pathways at the same synapse is largely unknown. Using NO imaging with diaminofluoresceine in cultured hippocampal neurons we analyzed the time course of neurotrophin-induced NO signals. Application of exogenous BDNF, NT-4, and NT-3 (but not NGF) induced NO signals in the soma and in proximal dendrites of hippocampal neurons that were sensitive to NO synthase activity, TrkB signaling, and intracellular calcium elevation. The effect of NO signaling on neurotrophin secretion was analyzed in BDNF-GFP, and NT-3-GFP transfected hippocampal neurons. Exogenous application of the NO donor sodium-nitroprusside markedly inhibited neurotrophin secretion. However, endogenously generated NO in response to depolarization and neurotrophin stimulation, both did not result in a negative feedback on neurotrophin secretion. These results suggest that a negative feedback of NO signaling on synaptic secretion of neurotrophins operates only at high intracellular levels of nitric oxide that are under physiological conditions not reached by depolarization or BDNF signaling.

17.
PLoS One ; 6(3): e18020, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21437203

RESUMO

The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Neuropeptídeos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Animais , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Técnicas In Vitro , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Camundongos , Técnicas de Patch-Clamp
18.
PLoS One ; 6(12): e27474, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164209

RESUMO

Neuronal high-voltage-activated (HVA) Ca(2+) channels are rapidly inactivated by a mechanism that is termed Ca(2+)-dependent inactivation (CDI). In this study we have shown that ß-adrenergic receptor (ßAR) stimulation inhibits CDI in rat thalamocortical (TC) relay neurons. This effect can be blocked by inhibition of cAMP-dependent protein kinase (PKA) with a cell-permeable inhibitor (myristoylated protein kinase inhibitor-(14-22)-amide) or A-kinase anchor protein (AKAP) St-Ht31 inhibitory peptide, suggesting a critical role of these molecules downstream of the receptor. Moreover, inhibition of protein phosphatases (PP) with okadaic acid revealed the involvement of phosphorylation events in modulation of CDI after ßAR stimulation. Double fluorescence immunocytochemistry and pull down experiments further support the idea that modulation of CDI in TC neurons via ßAR stimulation requires a protein complex consisting of Ca(V)1.2, PKA and proteins from the AKAP family. All together our data suggest that AKAPs mediate targeting of PKA to L-type Ca(2+) channels allowing their phosphorylation and thereby modulation of CDI.


Assuntos
Canais de Cálcio Tipo L/química , Cálcio/química , Receptores Adrenérgicos beta/metabolismo , Animais , Células COS , Córtex Cerebral/patologia , Chlorocebus aethiops , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Imuno-Histoquímica/métodos , Neurônios/metabolismo , Ácido Okadáico/farmacologia , Fosforilação , Ratos , Ratos Long-Evans , Transdução de Sinais , Tálamo/patologia , Distribuição Tecidual
19.
Front Cell Neurosci ; 4: 132, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21267426

RESUMO

In thalamocortical relay (TC) neurons, G-protein-coupled receptors play an important part in the control of activity modes. A conditional Gα(q) knockout on the background of a constitutive Gα(11) knockout (Gα(q)/Gα(11) (-/-)) was used to determine the contribution of Gq/G11 family G-proteins to metabotropic serotonin (5-HT) and glutamate (Glu) function in the dorsal part of the lateral geniculate nucleus (dLGN). In control mice, current clamp recordings showed that α-m-5-HT induced a depolarization of V(rest) which was sufficient to suppress burst firing. This depolarization was concentration-dependent (100 µM: +6 ± 1 mV, n = 10; 200 µM: +10 ± 1 mV, n = 7) and had a conditioning effect on the activation of other Gα(q)-mediated pathways. The depolarization was significantly reduced in Gα(q)/Gα(11) (-/-) (100 µM: 3 ± 1 mV, n = 11; 200 µM: 5 ± 1 mV, n = 6) and was apparently insufficient to suppress burst firing. Activating Gα(q)-coupled muscarinic receptors affected the magnitude of α-m-5-HT-induced effects in a reciprocal manner. Furthermore, the depolarizing effect of mGluR1 agonists was significantly reduced in Gα(q)/Gα(11) (-/-) mice. Immunohistochemical stainings revealed binding of 5-HT(2C)R- and mGluR1α-, but not of 5-HT(2A)R-specific antibodies in the dLGN of Gα(q)/Gα(11) (-/-) mice. In conclusion, these findings demonstrate that transmitters of ascending brainstem fibers and corticofugal fibers both signal via a central element in the form of Gq/G11-mediated pathways to control activity modes in the TC system.

20.
Dev Neurobiol ; 68(7): 934-49, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18361402

RESUMO

Networks of cortical neurons in vitro spontaneously develop synchronous oscillatory electrical activity at around the second week in culture. However, the underlying mechanisms and in particular the role of GABAergic interneurons in initiation and synchronization of oscillatory activity in developing cortical networks remain elusive. Here, we examined the intrinsic properties and the development of GABAergic and glutamatergic input onto presumed projection neurons (PNs) and large interneurons (L-INs) in cortical cultures of GAD67-GFP mice. Cultures developed spontaneous synchronous activity already at 5-7 days in vitro (DIV), as revealed by imaging transient changes in Fluo-3 fluorescence. Concurrently, spontaneous glutamate-mediated and GABA(A)-mediated postsynaptic currents (sPSCs) occured at 5 DIV. For both types of neurons the frequency of glutamatergic and GABAergic sPSCs increased with DIV, whereas the charge transfer of glutamatergic sPSCs increased and the charge transfer of GABAergic sPSCs decreased with cultivation time. The ratio between GABAergic and the overall charge transfer was significantly reduced with DIV for L-INs and PNs, indicating an overall reduction in GABAergic synaptic drive with maturation of the network. In contrast, analysis of miniature PSCs (mPSCs) revealed no significant changes of charge transfer with DIV for both types of neurons, indicating that the reduction in GABAergic drive was not due to a decreased number of functional synapses. Our data suggest that the global reduction in GABAergic synaptic drive together with more synaptic input to PNs and L-INs during maturation may enhance rhythmogenesis of the network and increase the synchronization at the level of population bursts.


Assuntos
Regulação para Baixo/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neocórtex/citologia , Rede Nervosa/fisiologia , Sinapses/patologia , Ácido gama-Aminobutírico/metabolismo , Animais , Bicuculina/farmacologia , Células Cultivadas , Relação Dose-Resposta à Radiação , Estimulação Elétrica , Embrião de Mamíferos , Antagonistas GABAérgicos/farmacologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/embriologia , Rede Nervosa/embriologia , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Patch-Clamp , Picrotoxina/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA