Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 196(4): 401, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538854

RESUMO

Effective water resources management and monitoring are essential amid increasing challenges posed by population growth, industrialization, urbanization, and climate change. Earth observation techniques offer promising opportunities to enhance water resources management and support informed decision-making. This study utilizes Landsat-8 OLI and Sentinel-2 MSI satellite data to estimate chlorophyl-a (chl-a) concentrations in the Nandoni reservoir, Thohoyandou, South Africa. The study estimated chl-a concentrations using random forest models with spectral bands only, spectral indices only (blue difference absorption (BDA), fluorescence line height in the violet region (FLH_violet), and normalized difference chlorophyll index (NDCI)), and combined spectral bands and spectral indices. The results showed that the models using spectral bands from both Landsat-8 OLI and Sentinel-2 MSI performed comparably. The model using Sentinel-2 MSI had a higher accuracy of estimating chl-a when spectral bands alone were used. Sentinel-2 MSI's additional red-edge spectral bands provided a notable advantage in capturing subtle variations in chl-a concentrations. Lastly, the -chl-a concentration was higher at the edges of the Nandoni reservoir and closer to the reservoir wall. The findings of this study are crucial for improving the management of water reservoirs, enabling proactive decision-making, and supporting sustainable water resource management practices. Ultimately, this research contributes to the broader understanding of the application of earth observation techniques for water resources management, providing valuable information for policymakers and water authorities.


Assuntos
Monitoramento Ambiental , Tecnologia de Sensoriamento Remoto , Clorofila A , Monitoramento Ambiental/métodos , Clorofila/análise , Água
2.
Environ Monit Assess ; 196(3): 273, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363433

RESUMO

Plastic pollution is a ubiquitous problem that poses a threat to society and the environment. The issue is especially pervasive in the aquatic environment, where large amounts of plastic debris accumulate from numerous anthropogenic pathways. Relatively little is known about the extent of macroplastics in African subtropical Austral rivers, where management strategies are lacking. This study quantifies and compares the variation in macroplastic abundances along the Mvudi River, South Africa, over four sites and four seasons. We observed a non-significant difference in macroplastic abundance and variation across sites and seasons, with pollution therefore widespread across these contexts. However, the diversity of plastic debris (i.e. γ-diversity value) decreased generally along sites, with most macroplastic items being collected during winter, and fewer macroplastic during autumn. We observed high abundances of macroplastic debris on the shoreline compared to the mainstream, with high proportional abundances of plastic bags and film (> 57.8%) macroplastic physical type across all sites and seasons. We also observed a high proportional abundance of the polymer polypropylene (> 25.3%) across seasons. The information derived from this study serves as the baseline for understanding seasonal variations in plastic debris and their driving factors on this and other subtropical Austral rivers.


Assuntos
Plásticos , Poluentes Químicos da Água , Rios , Resíduos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Sci Pollut Res Int ; 31(19): 28549-28563, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38561533

RESUMO

Floodplain pans are hydrologically dynamic in nature and characterised by variables such as chlorophyll-a (chl-a), water, and sediment chemistry over their hydroperiods. The present study investigated the spatio-temporal variations in water and sediment physico-chemical, and chlorophyll-a concentration characteristics of six floodplain pans found in the Ramsar declared Makuleke wetlands, Kruger National Park, South Africa. The water and sediment physico-chemical variable values were generally elevated during the high-water period, whereas chlorophyll-a concentrations varied across pans and hydroperiod. Benthic chl-a concentration significantly varied across pans with concentrations ranging from 161 to 1036.2 mg m2. The two-way ANOVA showed significant differences in benthic chl-a concentration among hydroperiods, and no significant differences were observed in pelagic chl-a across pans and hydroperiods. Generally, pelagic and benthic chl-a concentration increased as water and sediment chemistry variables increased. Furthermore, three sediment variables, i.e. pH, calcium, and magnesium, and water conductivity were found to be significant in structuring benthic chlorophyll-a dynamics in pans. However, none of the sediment and water variables had a significant effect on pelagic chl-a. Hydroperiod had a significant effect on influencing chl-a concentration, with high and low water level periods being characterised by low and high chl-a concentration, respectively. The n-MDS results showed strong overlaps in chl-a biomass among the Makuleke floodplain pans across hydroperiods. The increasing chl-a concentration in these floodplain pans due to potential bioturbation effects as a result of large mammals could potentially lead to eutrophication, which in turn could affect the system's primary productivity and aquatic biota. Therefore, it is important to establish a continuous monitoring programme on these pans to inform sound management decisions.


Assuntos
Clorofila A , Monitoramento Ambiental , Sedimentos Geológicos , Áreas Alagadas , Sedimentos Geológicos/química , África do Sul , Clorofila , Água/química
4.
Sci Total Environ ; 811: 152364, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-34919923

RESUMO

Invasive alien species are a growing global problem, and aquatic ecosystems have been regarded as particularly vulnerable. Biological invasions can alter ecosystem functioning, threaten native biodiversity and burden the global economy. Understanding alien species ability to disperse via locomotion following arrival to new environments is critical for prediction of spread rates. Here, we quantified in-field densities and compared movement traits between two widespread invasive alien snails, Tarebia granifera and Physa acuta. We measured the: (i) net distance and velocity to determine dispersal potential; and (ii) turning angles (both absolute and relative) and straightness index as proxies for exploratory behaviour. Tarebia granifera exhibited a significantly greater velocity and covered a significantly larger net distance (i.e., greater spread rate) than Physa acuta. In-field densities were marked for both species (T. granifera: mean 351 individuals m-2; P. acuta: mean 235 individuals m-2), but differed spatially. The exploratory behavior (i.e., mean or absolute turning angles and straightness index) did not differ significantly between the two alien species; both species showed a slight tendency to turn counterclockwise. The present study suggests a more rapid capacity to self-disperse in T. granifera than P. acuta, which could facilitate rapid spread within and between aquatic systems. Thus, this current study highlights the often-overlooked role of animal behaviour in promoting invasion; this autecological information can help inform predictive models for the spread of alien snails within freshwater ecosystems.


Assuntos
Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Água Doce , Humanos , Caramujos
5.
Environ Sci Pollut Res Int ; 28(27): 36102-36111, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33686602

RESUMO

Global freshwaters are increasingly threatened by pollutants emanating from human activities around watersheds. Microplastic pollution is an increasing problem for rivers worldwide, potentially threatening ecological integrity, ecosystem services and human health. We present quantifications and characterisations of sediment microplastic pollution in a subtropical river system in southern Africa, and relate distributions to wastewater treatment works, abiotic variables and urban environments. We additionally apply several diversity indices to decipher how microplastic types differ across the river system seasonally. Over two thousand microplastic particles were found across five sites and three seasons in the river system, comprising microbeads of various colours and microfibres. Microplastic concentrations were highest and most diverse in the hot-wet (mean range 76.0 ± 10.0-285.5 ± 44.5 microplastic kg-1) season as compared to the cool-dry (16.5 ± 4.5-27.0 ± 5.0 microplastic kg-1) and hot-dry (13.0 ± 4.0-29.0 ± 10.0 microplastic kg-1) seasons, and were mostly dominated by microfibres. However, no clear patterns were found in relation to wastewater treatment operations spatially, or in relation to abiotic variables in the river system. This study therefore finds a diverse range of microplastic types widely distributed in the river system that differ across seasons. Our results provide important, novel insights into plastic pollution in an understudied area of the Global South, and point to extensive pollution from sources outside of wastewater treatment works.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Ecossistema , Monitoramento Ambiental , Humanos , Microplásticos , Plásticos , Rios , Urbanização , Poluentes Químicos da Água/análise
6.
Plants (Basel) ; 9(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635545

RESUMO

: Metal pollution is pervasive across terrestrial and aquatic ecosystems owing to anthropogenic activities. Sediments can accrue high concentrations of metals and act as secondary sources, and thus may be valuable indicators of metal contamination across spatiotemporal scales. In aquatic systems, the extent of metal pollution may be further mediated by transference among sediments and living organisms, with plant metal contaminants potentially predictive of underlying sediment concentrations. The present study thus quantifies the extent of metal pollutants (Na, K, Ca, Mg, Cu, Zn, Mn, B, Fe) across multiple study sites and seasons (cool-dry, hot-wet, hot-dry) in a subtropical river system. Furthermore, uptake by a key macrophyte species, Phragmites australis, was examined and correlated with sediment pollution levels among different plant parts. Overall, sediment pollution load indices differed seasonally, being significantly highest during the cool-dry season irrespective of sampling location, suggesting that periods with reduced water flows can exacerbate metal pollution levels in riverine sediments. Also, metal concentrations were highest in upstream wetland sites, indicating a capacity for metal sink effects in these areas. Overall, macrophytes contained high concentrations of select metals, however composition and concentrations differed across plant parts, with roots containing particularly high concentrations of Fe and B. Correlations between sediment and macrophyte concentrations were mostly non-significant, whilst stem Mn and Fe concentrations correlated significantly negatively and positively to sediment concentrations, respectively. The present study identifies key spatiotemporal differences in multiple metal contaminants in an understudied subtropical aquatic system that align with hydrological regime differences. Whilst macrophytes were not found to be major accumulators, or predictors, of metal contaminants in this study, they may collectively play a central role in concentration regulation in aquatic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA