Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 30(21): 37664-37674, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36258350

RESUMO

Shock wave visual detection was traditionally performed using streak cameras, limited to homogeneous shock wave emission, with the corresponding shock wave pressure measurements available at rather large distances or numerically estimated through equation of state for water. We demonstrate a multi-frame multi-exposure shock wave velocity measurement technique for all in-plane directions of propagation, based on custom-built illumination system allowing multiple illumination pulses within each frame at multi-MHz frame rates and at up to 200 MHz illumination pulse repetition frequency at sub-nanosecond pulse durations. The measurements are combined and verified using a fiber-optic probe hydrophone, providing independent shock wave pressure and time-of-flight measurements, creating a novel all-optical measurement setup. The measured pressures at distances around 100 µm from the plasma center exceed 500 MPa, while camera-based measurements at even shorter distances indicate pressures above 1 GPa.

2.
Opt Express ; 29(15): 22868-22882, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34614565

RESUMO

The intermediate pulse duration regime between typical ultra-short and nanosecond pulses has been investigated using MHz-range bursts of 70 ps pulses emitted from a custom-made fiber laser source. The goal of this study was to observe and understand the processes involved during laser ablation on the timescales from picoseconds to nanoseconds, relevant due to pulses in bursts. We developed material processing approaches that enable similar behaviour as single 70 ps pulse ablation to ultra-short pulses in terms of quality and burst-mode behaviour like nanosecond pulses in terms of efficiency. The variability of the fiber laser operation modes was studied and compared to both ultra-short and nanosecond pulses from standard laser sources.

3.
Opt Express ; 25(21): 26356-26364, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29041292

RESUMO

Laser ablation and modification using bursts of picosecond pulses and a tightly focused laser beam are used to manufacture structures in the bulk silicon. We demonstrate precise control of the surface crystallinity as well as the structure depth and topography of the processed areas, achieving homogeneous surface properties. The control is achieved with a combination of a well-defined pulse energy, systematic pulse positioning on the material, and the number of pulses in a burst. A custom designed fiber laser source is used to generate bursts of 1, 5, 10, and 20 pulses at a pulse repetition rate of 40 MHz and burst repetition rate of 83.3 kHz allowing for a fast and stable processing of silicon. We show a controlled transition through different laser-matter interaction regimes, from no observable changes of the silicon at low pulse energies, through amorphization below the ablation threshold energy, to the ablation with either complete, partial or nonexistent amorphization. Single micrometer-sized areas of desired shape and crystallinity were defined on the silicon surface with submicron precision, offering a promising tool for applications in the field of optics.

4.
Appl Opt ; 52(26): 6506-11, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24085126

RESUMO

Novel fluorescence microscopy techniques and two-color laser direct imaging photolithography methods that enable resolution an order of magnitude beyond the diffraction limit require Laguerre-Gaussian beams and a fast and precise laser beam steering device to obtain images and produce microstructures. An acousto-optic deflector (AOD) is a suitable choice and provides high-speed random access beam positioning with subnanometer precision as well as beam intensity control in a single element. In high-resolution applications, the impact of an AOD on beam quality plays a major role. We study the transfer function of an AOD for a fundamental Gaussian and a doughnut-shaped Laguerre-Gaussian beam by measuring the beam quality as a function of the diffraction angle after passing through the device. It is demonstrated that an AOD introduces negligible distortion and degradation to the beam profile and is therefore highly suitable for use in super-resolution imaging and photolithography techniques where manipulation of Laguerre-Gaussian doughnut-shaped beams is required.

5.
Ultrason Sonochem ; 92: 106243, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36459905

RESUMO

The nucleation and growth of cavitation bubbles few micrometers in size in water generated by a 60 ps 515 nm fiber laser is observed and visualized near nucleation threshold. The study is performed by monitoring the plasma size, the cavitation bubble size and the emitted shock waves. The latter two aspects are supported by the Gilmore model using a Noble-Abel-stiffened-gas (NASG) equations of state. For the first time, two types of cavitation events are identified and visualized that exhibit a difference of more than two orders of magnitude in the excitation energy converted to mechanical effects with minimal change in excitation laser pulse energy. The result is localized cavitation and reduced mechanical stress on water-based media with potentially positive implications for laser treatments of biological tissue.


Assuntos
Lasers , Água , Fenômenos Físicos
6.
Ultrason Sonochem ; 99: 106537, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37531836

RESUMO

Principles of laser-induced nanobubble formation in water are studied and presented. Nanobubbles were generated by laser light at intensities below threshold for laser-induced breakdown and subsequently expanded by a rarefaction wave to facilitate their observation and analysis. Different methods were used to study nanobubble formation and characteristics. Firstly, probability of nanobubble formation as a function of water sample purity was examined. Secondly, relation between laser fluence at different wavelengths and the number of generated nanobubbles was investigated. Thirdly, measurements of nanobubble lifetime were conducted indicating a contradiction to the Epstein-Plesset equation-based prediction of free bubble dissociation. Accumulated evidence suggests that the presence of physical impurities is a prerequisite for nanobubble formation. Consequently, a lack of impurities results in the absence of nanobubbles in contrast to assumptions by existing studies. The findings presented in this paper provide new insights into the fundamental properties of laser-induced nanobubbles in water.

7.
Micromachines (Basel) ; 14(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37421076

RESUMO

Laser microstructuring has been studied extensively in the last decades due to its versatile, contactless processing and outstanding precision and structure quality on a wide range of materials. A limitation of the approach has been identified in the utilization of high average laser powers, with scanner movement fundamentally limited by laws of inertia. In this work, we apply a nanosecond UV laser working in an intrinsic pulse-on-demand mode, ensuring maximal utilization of the fastest commercially available galvanometric scanners at scanning speeds from 0 to 20 m/s. The effects of high-frequency pulse-on-demand operation were analyzed in terms of processing speeds, ablation efficiency, resulting surface quality, repeatability, and precision of the approach. Additionally, laser pulse duration was varied in single-digit nanosecond pulse durations and applied to high throughput microstructuring. We studied the effects of scanning speed on pulse-on-demand operation, single- and multipass laser percussion drilling performance, surface structuring of sensitive materials, and ablation efficiency for pulse durations in the range of 1-4 ns. We confirmed the pulse-on-demand operation suitability for microstructuring for a range of frequencies from below 1 kHz to 1.0 MHz with 5 ns timing precision and identified the scanners as the limiting factor even at full utilization. The ablation efficiency was improved with longer pulse durations, but structure quality degraded.

8.
Biomed Opt Express ; 13(2): 1061-1069, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35284176

RESUMO

Precise excitation of cavitation is a promising mechanism for microsurgery procedures and targeted drug delivery enhancement. The underlying phenomenon of interest, jetting behaviour of oscillating cavitation bubbles, occurs due to near-surface interactions between the boundary, liquid, and bubble. Within this study we measured boundary effects on the cavitation bubble dynamics and morphology, with an emphasis on observation and measurement of jetting behaviour near tissue-phantom biointerfaces. An important mechanism of boundary poration has been observed using time-resolved optical microscopy and explained for different tissue-phantom surface densities and Young's modulus. Below a critical distance to the boundary, around γ = 1.0, the resulting jets penetrated the tissue-phantom, resulting in highly localized few micrometer diameter jets.

9.
Biomed Opt Express ; 12(9): 5881-5893, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34692222

RESUMO

Tissue diseases and related disorders need to be first recognized using diagnostic methods and then later treated by therapeutic methods-a joint procedure called theranostics. One of the main challenges in the field of retinal therapies remains in the success of the treatment, typically improving the local metabolism, by sparing the surrounding tissue and with the immediate information of the laser effect. In our study, we present a concept for real-time controlled tissue theranostics on a proof-of-concept study capable of using a single tunable ps laser source (in terms of irradiance, fluence, and repetition rate), done on ex-vivo human retinal pigment epithelium. We have found autofluorescence intensity and lifetime imaging diagnostics very promising for the recognition and quantification of laser effects ranging from selective non-destructive molecular tissue modification to complete tissue ablation. The main novelty of our work presents the developed algorithm for optimized theranostics based on the model function used to quantify laser-induced tissue changes through the diagnostics descriptors, fluorescence lifetime and fluorescence intensity parameters. This approach, together with the operation of the single adaptable laser source, can serve as a new theranostics method in personalized medicine in the future not only limited to treat retinal diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA