Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nature ; 613(7942): 120-129, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517604

RESUMO

Myelin is required for the function of neuronal axons in the central nervous system, but the mechanisms that support myelin health are unclear. Although macrophages in the central nervous system have been implicated in myelin health1, it is unknown which macrophage populations are involved and which aspects they influence. Here we show that resident microglia are crucial for the maintenance of myelin health in adulthood in both mice and humans. We demonstrate that microglia are dispensable for developmental myelin ensheathment. However, they are required for subsequent regulation of myelin growth and associated cognitive function, and for preservation of myelin integrity by preventing its degeneration. We show that loss of myelin health due to the absence of microglia is associated with the appearance of a myelinating oligodendrocyte state with altered lipid metabolism. Moreover, this mechanism is regulated through disruption of the TGFß1-TGFßR1 axis. Our findings highlight microglia as promising therapeutic targets for conditions in which myelin growth and integrity are dysregulated, such as in ageing and neurodegenerative disease2,3.


Assuntos
Sistema Nervoso Central , Microglia , Bainha de Mielina , Adulto , Animais , Humanos , Camundongos , Axônios/metabolismo , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Microglia/citologia , Microglia/metabolismo , Microglia/patologia , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Cognição , Fator de Crescimento Transformador beta1/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Metabolismo dos Lipídeos , Envelhecimento/metabolismo , Envelhecimento/patologia
2.
J Neurosci ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266302

RESUMO

Injuries to the central nervous system (CNS) can cause severe neurological deficits. Axonal regrowth is a fundamental process for the reconstruction of compensatory neuronal networks after injury; however, it is extremely limited in the adult mammalian CNS. In this study, we conducted a loss-of-function genetic screen in cortical neurons, combined with a web-resource-based phenotypic screen, and identified synaptotagmin 4 (Syt4) as a novel regulator of axon elongation. Silencing Syt4 in primary cultured cortical neurons inhibits neurite elongation, with changes in gene expression involved in signaling pathways related to neuronal development. In a spinal cord injury model, inhibition of Syt4 expression in cortical neurons prevented axonal sprouting of the corticospinal tract, as well as neurological recovery after injury. These results provide a novel therapeutic approach to CNS injury by modulating Syt4 function.Significance Statement Promoting axonal regrowth has been considered a promising therapeutic target for functional recovery after central nervous system injury. In the present study, we used a web-resource-based phenotypic screening followed by loss-of-functional screening for neurite elongation. We identified a novel role of synaptotagmin 4 (Syt4), a well-characterized regulator of synaptic function, in neurite elongation. In addition, Syt4 knockdown in corticospinal tract inhibited axonal regrowth and functional recovery after spinal cord injury. In this way, we provide a new screening method, which allows us to efficiently find new targets regulating CNS therapeutics.

4.
Biochem Biophys Res Commun ; 618: 61-66, 2022 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-35716596

RESUMO

Lysophosphatidic acid (LPA) is a bioactive compound known to regulate various vascular functions. However, despite the fact that many vascular functions are regulated by peri-vascular cells such as pericytes, the effect of LPA on brain pericytes has not been fully evaluated. Thus, we designed this study to evaluate the effects of LPA on brain pericytes. These experiments revealed that while LPA receptors (LPARs) are expressed in cultured pericytes from mouse brains, LPA treatment does not influence the proliferation of these cells but does have a profound impact on their migration, which is regulated via the expression of LPAR1. LPAR1 expression was also detected in human pericyte culture and LPA treatment of these cells also induced migration. Taken together these findings imply that LPA-LPAR1 signaling is one of the key mechanisms modulating pericyte migration, which may help to control vascular function during development and repair processes.


Assuntos
Lisofosfolipídeos , Pericitos , Receptores de Ácidos Lisofosfatídicos , Animais , Movimento Celular , Lisofosfolipídeos/farmacologia , Camundongos , Pericitos/efeitos dos fármacos , Pericitos/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
5.
Biochem Biophys Res Commun ; 598: 89-94, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35151977

RESUMO

Lysophosphatidic acid (LPA) is a bioactive lipid that activates the G protein-coupled receptors, LPA1-6, which are associated with a wide number of cellular responses including proliferation, migration, differentiation, and survival. Although LPA1-6 are expressed in the developing brain, their functions in brain development are not fully understood. In the present study, we analyzed the temporal expression pattern of LPA receptors (LPARs) during neocortical development and found that LPA2 is highly expressed in neural stem/progenitor cells (NS/PCs) in the embryonic neocortex. LPA2 activation on cultured NS/PCs using GRI977143, a selective LPA2 agonist, promoted neuronal differentiation. LPA2-induced neuronal expansion was inhibited by FR180204, an extracellular signal-regulated kinase 1/2 (Erk1/2) inhibitor, suggesting that LPA2 promotes neuronal differentiation via Erk1/2 signaling. In addition, LPA2 activation promotes neurite elongation and branch formation. These results suggest that LPA2 is a critical regulator of neuronal differentiation and development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/citologia , Neuritos/fisiologia , Receptores de Ácidos Lisofosfatídicos/genética , Animais , Diferenciação Celular , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos Endogâmicos C57BL , Neocórtex/embriologia , Receptores de Ácidos Lisofosfatídicos/metabolismo
6.
Glia ; 69(11): 2591-2604, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34270117

RESUMO

Remyelination is a regenerative process that restores the lost neurological function and partially depends on oligodendrocyte differentiation. Differentiation of oligodendrocytes spontaneously occurs after demyelination, depending on the cell intrinsic mechanisms. By combining a loss-of-function genomic screen with a web-resource-based candidate gene identification approach, we identified that dimethylarginine dimethylaminohydrolase 1 (DDAH1) is a novel regulator of oligodendrocyte differentiation. Silencing DDAH1 in oligodendrocytes prevented the expression of myelin basic protein in mouse oligodendrocyte culture with the change in expression of genes annotated with oligodendrocyte development. DDAH1 inhibition attenuated spontaneous remyelination in a cuprizone-induced demyelinated mouse model. Conversely, increased DDAH1 expression enhanced remyelination capacity in experimental autoimmune encephalomyelitis. These results provide a novel therapeutic option for demyelinating diseases by modulating DDAH1 activity.


Assuntos
Remielinização , Amidoidrolases , Animais , Diferenciação Celular , Sistema Nervoso Central , Cuprizona/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia
7.
Int J Mol Sci ; 21(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143194

RESUMO

Central nervous system (CNS) injury, including stroke, spinal cord injury, and traumatic brain injury, causes severe neurological symptoms such as sensory and motor deficits. Currently, there is no effective therapeutic method to restore neurological function because the adult CNS has limited capacity to regenerate after injury. Many efforts have been made to understand the molecular and cellular mechanisms underlying CNS regeneration and to establish novel therapeutic methods based on these mechanisms, with a variety of strategies including cell transplantation, modulation of cell intrinsic molecular mechanisms, and therapeutic targeting of the pathological nature of the extracellular environment in CNS injury. In this review, we will focus on the mechanisms that regulate CNS regeneration, highlighting the history, recent efforts, and questions left unanswered in this field.


Assuntos
Axônios/fisiologia , Sistema Nervoso Central/fisiologia , Bainha de Mielina/fisiologia , Regeneração Nervosa , Remielinização , Animais , Humanos
8.
Biochem Biophys Res Commun ; 513(4): 841-845, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31003770

RESUMO

Microglia are central nervous system-resident immune cells that play a crucial role in brain development by interacting with neural precursor cells (NPCs). It has been reported that microglia regulate the number of NPC by phagocytosis, inducing apoptosis, and promoting proliferation. Microglia surrounding the subventricular zone express osteopontin (OPN) during brain development. The present study investigated the role of microglia in proliferation of NPCs in vitro, and identified the OPN receptor critical for proliferation of NPCs. Microglia co-cultured with NPCs in the presence of an OPN-neutralizing antibody resulted in OPN inhibition and reduced microglia-induced proliferation of NPCs. NPCs express integrin αvß3, which has been identified as an OPN receptor. Cilengitide, an inhibitor of integrin αvß3, also inhibited microglia-induced proliferation of NPCs. These results suggest that microglia promote the proliferation of NPCs via OPN-integrin αvß3 signaling.


Assuntos
Proliferação de Células , Microglia/metabolismo , Células-Tronco Neurais/citologia , Osteopontina/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura , Integrina alfaVbeta3/metabolismo , Microglia/citologia , Microglia/fisiologia , Transdução de Sinais
9.
Biochem Biophys Res Commun ; 500(3): 609-613, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29679562

RESUMO

Muscle cells secrete numerous molecules that function as endocrine hormones and regulate the functions of distant organs. Myelination in the central nervous system (CNS) is regulated by peripheral hormones. However, the effects of muscle-derived molecules on myelination have not been sufficiently analyzed. In this study, we show that muscle-releasing factors promote proliferation of oligodendrocyte precursor cells (OPCs), which is an element of myelination process. Supernatants of mouse myotube cultures stimulated bromodeoxyuridine (BrdU) incorporation into mouse OPCs. Mouse myotube supernatants did not enhance mouse OPC transmigration and myelin basic protein (MBP) expression. RNA sequencing identified candidate genes with hormonal functions that were expressed in mouse myotubes. These data support the possibility that hormonal molecules secreted by myotubes contribute to OPC proliferation and myelination.


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Células Precursoras de Oligodendrócitos/citologia , Células Precursoras de Oligodendrócitos/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , RNA/metabolismo
10.
Biochem Biophys Res Commun ; 482(4): 1160-1164, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27919687

RESUMO

The heart produces multiple diffusible factors that are involved in a number of physiological processes, but the action of these factors on the central nervous system is not well understood. In this study, we found that one or more factors released by cardiomyocytes promote oligodendrocyte precursor cell (OPC) proliferation in vitro. Mouse OPCs co-cultured with mouse cardiomyocytes showed higher proliferative ability than OPCs cultured alone. In addition, cardiomyocyte-conditioned media was sufficient to promote OPC proliferation. The phosphorylation of phosphatidylinositol (PI) 3-kinase and extracellular signal-regulated kinase (ERK) in OPCs is necessary for the enhancement of OPC proliferation by cardiomyocyte-conditioned media. These data indicate that heart-derived factors have the ability to directly regulate the function of central nervous system (CNS) cells.


Assuntos
Proliferação de Células , Miócitos Cardíacos/citologia , Oligodendroglia/citologia , Animais , Encéfalo/metabolismo , Diferenciação Celular , Células Cultivadas , Sistema Nervoso Central/metabolismo , Técnicas de Cocultura , Meios de Cultivo Condicionados , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/metabolismo , Bainha de Mielina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação
11.
J Biol Chem ; 290(18): 11515-25, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25795781

RESUMO

Pericytes play pivotal roles in physiological and pathophysiological conditions in the central nervous system. As pericytes prevent vascular leakage, they can halt neuronal damage stemming from a compromised blood-brain barrier. Therefore, pericytes may be a good target for the treatment of neurodegenerative disorders, although evidence is lacking. In this study, we show that prostacyclin attenuates lysophosphatidylcholine (LPC)-mediated vascular dysfunction through pericyte protection in the adult mouse spinal cord. LPC decreased the number of pericytes in an in vitro blood-brain barrier model, and this decrease was prevented by iloprost treatment, a prostacyclin analog. Intrathecal administration of iloprost attenuated vascular barrier disruption after LPC injection in the mouse spinal cord. Furthermore, iloprost treatment diminished demyelination and motor function deficits in mice injected with LPC. These results support the notion that prostacyclin acts on pericytes to maintain vascular barrier integrity.


Assuntos
Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/prevenção & controle , Epoprostenol/metabolismo , Lisofosfatidilcolinas/farmacologia , Pericitos/citologia , Pericitos/efeitos dos fármacos , Medula Espinal/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Contagem de Células , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/fisiopatologia , Progressão da Doença , Feminino , Iloprosta/farmacologia , Camundongos , Atividade Motora/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo
12.
Biochem Biophys Res Commun ; 450(1): 593-7, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24928391

RESUMO

The interaction of neurons with their non-neuronal milieu plays a crucial role in the formation of neural networks, and wide variety of cell-contact-dependent signals that promote neurite elongation have been identified. In this study, we found that vascular endothelial cells promote neurite elongation in an integrin ß3-dependent manner. Vascular endothelial cells from the cerebral cortex promoted neurite elongation of cortical neurons in a cell contact-dependent manner. This effect was mediated by arginine-glycine-aspartic acid (RGD), a major recognition sequence for integrins. Pharmacological blockade of integrin ß3 abolished the neurite elongation effect induced by the endothelial cells. Immunocytochemical analysis revealed that integrin ß3 was expressed on cultured cortical neurons. These results demonstrate that the neurite elongation promoted by vascular endothelial cells requires integrin ß3. Vascular endothelial cells may therefore play a role in the development and repair of neural networks in the central nervous system.


Assuntos
Comunicação Celular/fisiologia , Córtex Cerebral/fisiologia , Células Endoteliais/fisiologia , Integrina beta3/metabolismo , Neuritos/fisiologia , Oligopeptídeos/metabolismo , Animais , Crescimento Celular , Células Cultivadas , Ratos , Ratos Wistar
13.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39211079

RESUMO

Monocyte-derived macrophages recruited to injured tissues induce a maladaptive fibrotic response characterized by excessive production of collagen by local fibroblasts. Macrophages initiate this programming via paracrine factors, but it is unknown whether reciprocal responses from fibroblasts enhance profibrotic polarization of macrophages. We identify macrophage-fibroblast crosstalk necessary for injury-associated fibrosis, in which macrophages induced interleukin 6 ( IL-6 ) expression in fibroblasts via purinergic receptor P2rx4 signaling, and IL-6, in turn, induced arginase 1 ( Arg1 ) expression in macrophages. Arg1 contributed to fibrotic responses by metabolizing arginine to ornithine, which fibroblasts used as a substrate to synthesize proline, a uniquely abundant constituent of collagen. Imaging of idiopathic pulmonary fibrosis (IPF) lung samples confirmed expression of ARG1 in myeloid cells, and arginase inhibition suppressed collagen expression in cultured precision-cut IPF lung slices. Taken together, we define a circuit between macrophages and fibroblasts that facilitates cross-feeding metabolism necessary for injury-associated fibrosis.

14.
Biomater Sci ; 11(8): 2860-2869, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36861675

RESUMO

Remyelination of the central nervous system (CNS) is a regenerative response that depends on the development of oligodendrocyte precursor cells (OPCs), which are generated from neural stem cells in developmental stages and exist as tissue stem cells in the adult CNS. Three-dimensional (3D) culture systems that recapitulate the complexity of the in vivo microenvironment are important for understanding the behavior of OPCs in remyelination and for exploring effective therapeutic approaches. In general, functional analysis of OPCs has mainly used two-dimensional (2D) culture systems; however, the differences between the properties of OPCs cultured in 2D and 3D have not been fully elucidated despite cellular functions being affected by the scaffold. In this study, we analyzed the phenotypic and transcriptomic differences in OPCs from 2D and collagen gel-based 3D cultures. In the 3D culture, the OPCs exhibited less than half ratio of proliferation and almost half ratio of differentiation to mature oligodendrocytes, compared to the 2D culture in the same culturing period. RNA-seq data showed robust changes in the expression level of genes associated with oligodendrocyte differentiation, and there were more up-regulated genes than down-regulated genes in 3D cultures compared to 2D cultures. In addition, the OPCs cultured in collagen gel scaffolds at lower collagen fiber densities showed higher proliferation activity compared with those cultured in collagen gel with higher collagen fiber densities. Our findings have identified the effect of culture dimension as well as the complexity of the scaffold on OPC responses at the cellular and molecular levels.


Assuntos
Células-Tronco Neurais , Células Precursoras de Oligodendrócitos , Células Precursoras de Oligodendrócitos/metabolismo , Células Cultivadas , Diferenciação Celular , Oligodendroglia
15.
Front Cell Neurosci ; 17: 1081190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252191

RESUMO

Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the white matter degeneration. Although changes in blood lipids are involved in the pathogenesis of neurological diseases, the pathological role of blood lipids in ALS remains unclear. Methods and results: We performed lipidome analysis on the plasma of ALS model mice, mutant superoxide dismutase 1 (SOD1G93A) mice, and found that the concentration of free fatty acids (FFAs), including oleic acid (OA) and linoleic acid (LA), decreased prior to disease onset. An in vitro study revealed that OA and LA directly inhibited glutamate-induced oligodendrocytes cell death via free fatty acid receptor 1 (FFAR1). A cocktail containing OA/LA suppressed oligodendrocyte cell death in the spinal cord of SOD1G93A mice. Discussion: These results suggested that the reduction of FFAs in the plasma is a pathogenic biomarker for ALS in the early stages, and supplying a deficiency in FFAs is a potential therapeutic approach for ALS by preventing oligodendrocyte cell death.

16.
Biomater Sci ; 11(10): 3450-3460, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37014025

RESUMO

The mechanisms of solute transport in brain tissues are still under debate. The medical relevance of this topic has put the blood-brain barrier and the mechanisms of solute transport through the brain parenchyma in the spotlight, notably in the context of brain clearance. In the last decade, the classical view of pure diffusive flow across the brain parenchyma was tested against the recent proposal of an active, convectional fluid flow model known as the glymphatic model. Experimental studies of brain transport on living humans and animals have temporal and spatial limitations to validate any of these models. Therefore, detailed microscopic observations, mostly ex vivo tissue and simplified in vitro brain models with the support from computational models, are necessary to understand transport mechanisms in brain tissues. However, standardization is lacking between these experimental approaches, which tends to limit the generality of conclusions. In this review, we provide an overview of the output and limitations of modern brain solute transport studies to search for key parameters comparable across experimental setups. We emphasize that in vitro models relying on physiological material and reproducing the biophysical setting of the brain, as well as computational/mathematical models constitute powerful solutions to understand the solute transport phenomena inside of the brain tissue. Finally, we suggest the blood-brain barrier permeability and the apparent diffusion coefficient through the brain parenchyma to be robust biophysical parameters for the extraction of cross-model conclusion.


Assuntos
Modelos Biológicos , Modelos Teóricos , Humanos , Animais , Transporte Biológico , Difusão , Encéfalo
17.
iScience ; 26(11): 108110, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37860691

RESUMO

In neuropathic pain, recent evidence has highlighted a sex-dependent role of the P2X4 receptor in spinal microglia in the development of tactile allodynia following nerve injury. Here, using internalization-defective P2X4mCherryIN knockin mice (P2X4KI), we demonstrate that increased cell surface expression of P2X4 induces hypersensitivity to mechanical stimulations and hyperexcitability in spinal cord neurons of both male and female naive mice. During neuropathy, both wild-type (WT) and P2X4KI mice of both sexes develop tactile allodynia accompanied by spinal neuron hyperexcitability. These responses are selectively associated with P2X4, as they are absent in global P2X4KO or myeloid-specific P2X4KO mice. We show that P2X4 is de novo expressed in reactive microglia in neuropathic WT and P2X4KI mice of both sexes and that tactile allodynia is relieved by pharmacological blockade of P2X4 or TrkB. These results show that the upregulation of P2X4 in microglia is crucial for neuropathic pain, regardless of sex.

18.
Inflamm Regen ; 42(1): 7, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35232486

RESUMO

Glial cells play crucial roles in brain homeostasis and pathogenesis of central nervous system (CNS) injuries and diseases. However, the roles of these cells and the molecular mechanisms toward regeneration in the CNS have not been fully understood, especially the capacity of them toward demyelinating diseases. Therefore, there are still very limited therapeutic strategies to restore the function of adult CNS in diseases such as multiple sclerosis (MS). Remyelination, a spontaneous regeneration process in the CNS, requires the involvement of multiple cellular and extracellular components. Promoting remyelination by therapeutic interventions is a promising novel approach to restore the CNS function. Herein, we review the role of glial cells in CNS diseases and injuries. Particularly, we discuss the roles of glia and their functional interactions and regulatory mechanisms in remyelination, as well as the current therapeutic strategies for MS.

19.
Curr Opin Pharmacol ; 62: 130-136, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34995894

RESUMO

Injury in the central nervous system leads to neurological deficits, depending on the disruption of neural networks. Remyelination, which occurs partially and spontaneously, is a critical process in the regeneration of neural networks to recover from neurological deficits. Remyelination depends on the development of oligodendrocytes, including the proliferation of oligodendrocyte precursor cells (OPCs) and the differentiation of OPCs into mature oligodendrocytes to form myelin. OPC proliferation and differentiation are regulated by intracellular and extracellular mechanisms, and recent studies have demonstrated that circulating factors secreted from peripheral organs or infiltrated immune cells play a key role in controlling oligodendrocyte development following remyelination in adult mammals. In this review, we describe the beneficial and detrimental effects of systemic environments, such as circulating factors derived from peripheral organs and immune cells, on CNS remyelination.


Assuntos
Remielinização , Animais , Diferenciação Celular/fisiologia , Sistema Nervoso Central/fisiologia , Humanos , Mamíferos , Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Remielinização/fisiologia
20.
Front Immunol ; 13: 880887, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634278

RESUMO

Macrophages are paracrine signalers that regulate tissular responses to injury through interactions with parenchymal cells. Connexin hemichannels have recently been shown to mediate efflux of ATP by macrophages, with resulting cytosolic calcium responses in adjacent cells. Here we report that lung macrophages with deletion of connexin 43 (MacΔCx43) had decreased ATP efflux into the extracellular space and induced a decreased cytosolic calcium response in co-cultured fibroblasts compared to WT macrophages. Furthermore, MacΔCx43 mice had decreased lung fibrosis after bleomycin-induced injury. Interrogating single cell data for human and mouse, we found that P2rx4 was the most highly expressed ATP receptor and calcium channel in lung fibroblasts and that its expression was increased in the setting of fibrosis. Fibroblast-specific deletion of P2rx4 in mice decreased lung fibrosis and collagen expression in lung fibroblasts in the bleomycin model. Taken together, these studies reveal a Cx43-dependent profibrotic effect of lung macrophages and support development of fibroblast P2rx4 as a therapeutic target for lung fibrosis.


Assuntos
Conexina 43 , Fibrose Pulmonar Idiopática , Trifosfato de Adenosina/metabolismo , Animais , Bleomicina/farmacologia , Cálcio/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA