Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell ; 26(1): 497-515, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24488961

RESUMO

The recognition between disease resistance (R) genes in plants and their cognate avirulence (Avr) genes in pathogens can produce a hypersensitive response of localized programmed cell death. However, our knowledge of the early signaling events of the R gene-mediated hypersensitive response in plants remains limited. Here, we report the cloning and characterization of Xa10, a transcription activator-like (TAL) effector-dependent R gene for resistance to bacterial blight in rice (Oryza sativa). Xa10 contains a binding element for the TAL effector AvrXa10 (EBEAvrXa10) in its promoter, and AvrXa10 specifically induces Xa10 expression. Expression of Xa10 induces programmed cell death in rice, Nicotiana benthamiana, and mammalian HeLa cells. The Xa10 gene product XA10 localizes as hexamers in the endoplasmic reticulum (ER) and is associated with ER Ca(2+) depletion in plant and HeLa cells. XA10 variants that abolish programmed cell death and ER Ca(2+) depletion in N. benthamiana and HeLa cells also abolish disease resistance in rice. We propose that XA10 is an inducible, intrinsic terminator protein that triggers programmed cell death by a conserved mechanism involving disruption of the ER and cellular Ca(2+) homeostasis.


Assuntos
Apoptose/genética , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Resistência à Doença/genética , Células HeLa , Humanos , Membranas Intracelulares/metabolismo , Dados de Sequência Molecular , Oryza/citologia , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
2.
Blood ; 124(12): 1931-40, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-25092175

RESUMO

Global nuclear condensation, culminating in enucleation during terminal erythropoiesis, is poorly understood. Proteomic examination of extruded erythroid nuclei from fetal liver revealed a striking depletion of most nuclear proteins, suggesting that nuclear protein export had occurred. Expression of the nuclear export protein, Exportin 7 (Xpo7), is highly erythroid-specific, induced during erythropoiesis, and abundant in very late erythroblasts. Knockdown of Xpo7 in primary mouse fetal liver erythroblasts resulted in severe inhibition of chromatin condensation and enucleation but otherwise had little effect on erythroid differentiation, including hemoglobin accumulation. Nuclei in Xpo7-knockdown cells were larger and less dense than normal and accumulated most nuclear proteins as measured by mass spectrometry. Strikingly,many DNA binding proteins such as histones H2A and H3 were found to have migrated into the cytoplasm of normal late erythroblasts prior to and during enucleation, but not in Xpo7-knockdown cells. Thus, terminal erythroid maturation involves migration of histones into the cytoplasm via a process likely facilitated by Xpo7.


Assuntos
Eritroblastos/citologia , Eritroblastos/metabolismo , Histonas/sangue , Carioferinas/sangue , Proteína ran de Ligação ao GTP/sangue , Animais , Núcleo Celular/metabolismo , Citosol/metabolismo , Eritropoese/genética , Eritropoese/fisiologia , Técnicas de Silenciamento de Genes , Carioferinas/antagonistas & inibidores , Carioferinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/sangue , Proteína ran de Ligação ao GTP/antagonistas & inibidores , Proteína ran de Ligação ao GTP/genética
3.
J Cell Sci ; 125(Pt 20): 4713-9, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825873

RESUMO

Proper positioning of the cleavage furrow is essential for successful cell division. The mitotic spindle, which consists of dynamic astral microtubules and stable equatorial microtubules is responsible for this process. However, little is known about how microtubules are regulated in a time- and region-dependent manner. Here, we show that α-actinin-regulated cortical actin filament integrity is crucial to specify different populations of microtubules during cell division in mammalian cells. Depletion of α-actinin caused aberrant recruitment of centralspindlin, but not aurora B or PRC1, to the tips of astral microtubules, leading to a stable association of astral microtubules with the cortex and induction of ectopic furrowing. Depletion of α-actinin also caused impaired assembly of midzone microtubules, leading to a failure of relocation of aurora B to midzone. Our findings unveil an unexpected yet crucial role for an actin crosslinking protein in the regulation of the localization of the microtubule-associated cytokinetic regulator.


Assuntos
Citoesqueleto de Actina , Actinina , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos , Fuso Acromático , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinina/genética , Actinina/metabolismo , Actinina/ultraestrutura , Aurora Quinase B , Aurora Quinases , Divisão Celular/genética , Células HeLa , Humanos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Proteína rhoA de Ligação ao GTP/antagonistas & inibidores , Proteína rhoA de Ligação ao GTP/metabolismo
4.
J Cell Sci ; 125(Pt 2): 340-9, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22331356

RESUMO

Enucleation, the final step in terminal differentiation of mammalian red blood cells, is an essential process in which the nucleus surrounded by the plasma membrane is budded off from the erythroblast to form a reticulocyte. Most molecular events in enucleation remain unclear. Here we show that enucleation requires establishment of cell polarization that is regulated by the microtubule-dependent local activation of phosphoinositide 3-kinase (PI3K). When the nucleus becomes displaced to one side of the cell, actin becomes restricted to the other side, where dynamic cytoplasmic contractions generate pressure that pushes the viscoelastic nucleus through a narrow constriction in the cell surface, forming a bud. The PI3K products PtdIns(3,4)P2 and PtdIns(3,4,5)P3 are highly localized at the cytoplasmic side of the plasma membrane. PI3K inhibition caused impaired cell polarization, leading to a severe delay in enucleation. Depolymerization of microtubules reduced PI3K activity, resulting in impaired cell polarization and enucleation. We propose that enucleation is regulated by microtubules and PI3K signaling in a manner mechanistically similar to directed cell locomotion.


Assuntos
Núcleo Celular/fisiologia , Polaridade Celular , Eritroblastos/citologia , Eritroblastos/enzimologia , Eritropoese , Fosfatidilinositol 3-Quinase/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Citoplasma/fisiologia , Eritroblastos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia
5.
Cancer Discov ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38885349

RESUMO

Over-consumption of iron-rich red meat and hereditary or genetic iron overload are associated with increased risk of colorectal carcinogenesis, yet the mechanistic basis of how metal-mediated signaling leads to oncogenesis remains enigmatic. Using fresh colorectal cancer (CRC) samples we identify Pirin, an iron sensor, that overcomes a rate-limiting step in oncogenesis, by re-activating the dormant human-reverse-transcriptase (hTERT) subunit of telomerase holoenzyme in an iron-(Fe3+)-dependent-manner and thereby drives CRCs. Chemical genetic screens combined with isothermal-dose response fingerprinting and mass-spectrometry identified a small molecule SP2509, that specifically inhibits Pirin-mediated hTERT reactivation in CRCs by competing with iron-(Fe3+) binding. Our findings, first to document how metal ions reactivate telomerase, provide a molecular mechanism for the well-known association between red meat, and increased incidence of CRCs. Small molecules like SP2509 represent a novel modality to target telomerase that acts as driver of 90% human cancers and is yet to be targeted in clinic.

6.
Dev Cell ; 13(4): 554-65, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17925230

RESUMO

Localization of the actin crosslinking protein, alpha-actinin, to the cleavage furrow has been previously reported. However, its functions during cytokinesis remain poorly understood. We have analyzed the functions of alpha-actinin during cytokinesis by a combination of molecular manipulations and imaging-based techniques. alpha-actinin gradually dissipated from the cleavage furrow as cytokinesis progressed. Overexpression of alpha-actinin caused increased accumulation of actin filaments because of inhibition of actin turnover, leading to cytokinesis failure. Global depletion of alpha-actinin by siRNA caused a decrease in the density of actin filaments throughout the cell cortex, surprisingly inducing accelerated cytokinesis and ectopic furrows. Local ablation of alpha-actinin induced accelerated cytokinesis specifically at the site of irradiation. Neither overexpression nor depletion of alpha-actinin had an apparent effect on myosin II organization. We conclude that cytokinesis in mammalian cells requires tightly regulated remodeling of the cortical actin network mediated by alpha-actinin in coordination with actomyosin-based cortical contractions.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinina/fisiologia , Citocinese/fisiologia , Animais , Linhagem Celular , Ratos
7.
Exp Cell Res ; 317(16): 2384-9, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21763307

RESUMO

Cytokinesis in mammalian cells requires actin assembly at the equatorial region. Although functions of RhoA in this process have been well established, additional mechanisms are likely involved. We have examined if Cdc42 is involved in actin assembly during cytokinesis. Depletion of Cdc42 had no apparent effects on the duration of cytokinesis, while overexpression of constitutively active Cdc42 (CACdc42) caused cytokinesis failure in normal rat kidney epithelial cells. Cells depleted of Cdc42 displayed abnormal cell morphology and caused a failure of tight accumulation of actin and RhoA at the equator. In contrast, in cells overexpressing CACdc42, actin formed abnormal bundles and RhoA was largely eliminated from the equator. Our results suggest that accurate regulation of Cdc42 activity is crucial for proper equatorial actin assembly and RhoA localization during cytokinesis. Notably, our observations also suggest that tight actin concentration is not essential for cytokinesis in adherent mammalian cells.


Assuntos
Actinas/metabolismo , Citocinese/fisiologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patologia , Actinas/genética , Animais , Linhagem Celular , Forma Celular , Células Epiteliais/patologia , Rim/citologia , Microscopia de Contraste de Fase , Mitose/fisiologia , RNA Interferente Pequeno/genética , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Imagem com Lapso de Tempo , Transfecção , Proteína cdc42 de Ligação ao GTP/deficiência , Proteína cdc42 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
8.
Exp Cell Res ; 316(12): 1925-34, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20230817

RESUMO

alpha-Actinin is a rod-shaped actin cross-linking protein composed of actin binding domain, spectrin-like repeats of the central rod domain and the EF-hand domain. Cytokinesis in mammalian cells involves remodeling of equatorial actin filaments (F-actin) mediated by alpha-actinin. However, it remains unknown how alpha-actinin interacts with F-actin at the cleavage furrow. To address this question, we have conducted functional analysis of the mutant that either lacks the ability to cross-link F-actin (ABD) or to bind to F-actin (DeltaABD). We found that equatorial localization of alpha-actinin requires both its F-actin binding and cross-linking activities. Unexpectedly, we also found that overexpression of DeltaABD-GFP but not ABD-GFP frequently caused accelerated cytokinesis and ectopic furrowing similar to those observed in cells depleted of alpha-actinin. Immunofluorescence revealed that overexpression of DeltaABD-GFP caused displacement of endogenous alpha-actinin and a decrease in the density of F-actin throughout the entire cortex. Biochemical experiments showed that DeltaABD was able to form heterodimers with endogenous alpha-actinin. These results suggest that the central rod spectrin-like repeats of alpha-actinin is sufficient for its dimerization in vivo. Our findings uncover previously unappreciated functions of the alpha-actinin domains in a cell.


Assuntos
Actinina/metabolismo , Actinas/metabolismo , Citocinese/fisiologia , Citoesqueleto/metabolismo , Actinina/química , Actinina/genética , Actinas/química , Animais , Sítios de Ligação , Células Cultivadas , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Estrutura Terciária de Proteína , Ratos
9.
Curr Biol ; 17(3): 266-72, 2007 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-17276920

RESUMO

Proteins structurally related to eukaryotic actins have recently been identified in several prokaryotic organisms. These actin-like proteins (MreB and ParM) and the deviant Walker A ATPase (SopA) play a key role in DNA segregation and assemble into polymers in vitro and in vivo. MreB also plays a role in cellular morphogenesis. Whereas the dynamic properties of eukaryotic actins have been extensively characterized, those of bacterial actins are only beginning to emerge. We have established the fission yeast Schizosaccharomyces pombe as a cellular model for the functional analysis of the Escherichia coli actin-related protein MreB. We show that MreB organizes into linear bundles that grow in a symmetrically bidirectional manner at 0.46 +/- 0.03 microm/min, with new monomers and/or oligomers being added along the entire length of the bundle. Organization of linear arrays was dependent on the ATPase activity of MreB, and their alignment along the cellular long axis was achieved by sliding along the cortex of the cylindrical part of the cell. The cell ends appeared to provide a physical barrier for bundle elongation. These experiments provide new insights into the mechanism of assembly and organization of the bacterial actin cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Proteínas de Escherichia coli/metabolismo , Schizosaccharomyces/citologia , Biopolímeros/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Fluorescência Verde/genética , Proteínas Recombinantes de Fusão/metabolismo , Transformação Genética
10.
Haematologica ; 95(12): 2013-21, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20823130

RESUMO

BACKGROUND: During the final stages of differentiation of mammalian erythroid cells, the chromatin is condensed and enucleated. We previously reported that Rac GTPases and their downstream target, mammalian homolog of Drosophila diaphanous 2 (mDia2), are required for enucleation of in vitro cultured mouse fetal liver erythroblasts. However, it is not clear how chromatin condensation is achieved and whether it is required for enucleation. DESIGN AND METHODS: Mouse fetal liver erythroblasts were purified from embryonic day 14.5 pregnant mice and cultured in erythropoietin-containing medium. Enucleation was determined by flow-cytometry based analysis after treatment with histone deacetylase inhibitors or infection with lentiviral short hairpin RNA. RESULTS: We showed that histone deacetylases play critical roles in chromatin condensation and enucleation in cultured mouse fetal liver erythroblasts. Enzymatic inhibition of histone deacetylases by trichostatin A or valproic acid prior to the start of enucleation blocked chromatin condensation, contractile actin ring formation and enucleation. We further demonstrated that histone deacetylases 1, 2, 3 and 5 are highly expressed in mouse fetal erythroblasts. Short hairpin RNA down-regulation of histone deacetylase 2, but not of the other histone deacetylases, phenotypically mimicked the effect of trichostatin A or valproic acid treatment, causing significant inhibition of chromatin condensation and enucleation. Importantly, knock-down of histone deacetylase 2 did not affect erythroblast proliferation, differentiation, or apoptosis. CONCLUSIONS: These results identify histone deacetylase 2 as an important regulator, mediating chromatin condensation and enucleation in the final stages of mammalian erythropoiesis.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Eritroblastos/metabolismo , Histona Desacetilase 2/metabolismo , Acetilação , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Eritroblastos/citologia , Eritroblastos/efeitos dos fármacos , Eritropoese/efeitos dos fármacos , Feminino , Feto , Histona Desacetilase 2/antagonistas & inibidores , Histona Desacetilase 2/genética , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Gravidez , Interferência de RNA , Ácido Valproico/farmacologia
11.
J Cell Biol ; 159(1): 45-53, 2002 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-12370248

RESUMO

To address the mechanism that coordinates cytokinesis with mitosis, we have studied the dynamics of aurora B, a chromosomal passenger protein involved in signaling cytokinesis. Photobleaching analyses indicated dynamic exchange of aurora B between a centromeric and a cytoplasmic pool before anaphase onset, and stable associations with microtubules after anaphase onset. Bleaching near centromeres upon anaphase onset affected the subsequent appearance of fluorescence along midzone microtubules, but not that near the lateral equatorial cortex, suggesting that there were centromeric-dependent and -independent pathways that transported aurora B to the equator. The former delivered centromeric aurora B along midzone microtubules, whereas the latter delivered cytoplasmic aurora B along astral microtubules. We suggest that cultured cells use midzone microtubules as the primary signaling pathway for cytokinesis, whereas embryos, with their stockpile of cytoplasmic proteins and large sizes, rely primarily on astral microtubules.


Assuntos
Divisão Celular/fisiologia , Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Animais , Aurora Quinases , Linhagem Celular , Recuperação de Fluorescência Após Fotodegradação , Imuno-Histoquímica , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão/metabolismo
12.
Curr Biol ; 12(11): 894-9, 2002 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-12062052

RESUMO

As a component of the "chromosomal passenger protein complex," the aurora B kinase is associated with centromeres during prometaphase and with midzone microtubules during anaphase and is required for both mitosis and cytokinesis. Ablation of aurora B causes defects in both prometaphase chromosomal congression and the spindle checkpoint; however, the mechanisms underlying these defects are unclear. To address this question, we have examined chromosomal movement, spindle organization, and microtubule motor distribution in NRK cells transfected with a kinase-inactive, dominant-negative mutant of aurora B, aurora B(K-R). In cells overexpressing aurora B(K-R) fused with GFP, centromeres moved in a synchronized and predominantly unidirectional manner, as opposed to the independent, bidirectional movement in control cells expressing a similar level of wild-type aurora B-GFP. In addition, most kinetochores became physically separated from spindle microtubules, which appeared as a striking bundle between the spindle poles. These defects were associated with a microtubule-dependent depletion of motor proteins dynein and CENP-E from kinetochores. Our observations suggest that aurora B regulates the association of motor proteins with kinetochores during prometaphase. Interactions of kinetochore motors with microtubules may in turn regulate the organization of microtubules, the movement of prometaphase chromosomes, and the release of the spindle checkpoint.


Assuntos
Cinetocoros/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Linhagem Celular , Imunofluorescência , Proteínas de Fluorescência Verde , Proteínas Luminescentes/metabolismo , Microinjeções , Proteínas Serina-Treonina Quinases/fisiologia , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
13.
Mol Biol Cell ; 13(4): 1099-108, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11950924

RESUMO

Aurora B is a protein kinase and a chromosomal passenger protein that undergoes dynamic redistribution during mitosis. We have probed the mechanism that regulates its localization with cells expressing green fluorescent protein (GFP)-tagged wild-type or mutant aurora B. Aurora B was found at centromeres at prophase and persisted until approximately 0.5 min after anaphase onset, when it redistributed to the spindle midzone and became concentrated at the equator along midzone microtubules. Depolymerization of microtubules inhibited the dissociation of aurora B from centromeres at early anaphase and caused the dispersion of aurora B from the spindle midzone at late anaphase; however, centromeric association during prometaphase was unaffected. Inhibition of CDK1 deactivation similarly caused aurora B to remain associated with centromeres during anaphase. In contrast, inhibition of the kinase activity of aurora B appeared to have no effect on its interactions with centromeres or initial relocation onto midzone microtubules. Instead, kinase-inactive aurora B caused abnormal mitosis and deactivation of the spindle checkpoint. In addition, midzone microtubule bundles became destabilized and aurora B dispersed from the equator. Our results suggest that microtubules, CDK1, and the kinase activity each play a distinct role in the dynamics and functions of aurora B in dividing cells.


Assuntos
Divisão Celular , Mitose , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Aurora Quinase B , Aurora Quinases , Células Cultivadas , Ciclina B/metabolismo , Proteínas de Fluorescência Verde , Rim/metabolismo , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Microtúbulos/metabolismo , Modelos Biológicos , Plasmídeos/metabolismo , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Rodaminas/metabolismo , Fatores de Tempo , Transcrição Gênica , Transfecção , Tubulina (Proteína)/metabolismo
14.
Oncogene ; 21(38): 5852-60, 2002 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12185584

RESUMO

Phosphorylation of myosin II regulatory light chain (MRLC) is important for cell motility and cytokinesis in nonmuscle cells. Although the regulation of monophosphorylated MRLC at serine 19 throughout the cell cycle was examined in detail, MRLC diphosphorylation at both threonine 18 and serine 19 is still unclear. Here we found that Rho-kinase has an activity for MRLC diphosphorylation in nonmuscle cells using sequential column chromatographies. Transfection of Rho-kinase-EGFP induced the excess diphosphorylated MRLC and the bundling of the actin filaments. Conversely, the treatment of cells with a specific inhibitor of Rho-kinase, Y-27632, resulted in the decrease of endogenous diphosphorylated MRLC and actin stress fibers. Immunolocalization studies showed that both diphosphorylated MRLC and Rho-kinase accumulated and colocalized at the contractile ring and the midbody in dividing cells. Taken together, it is suggested that Rho-kinase contributes to MRLC diphosphorylation and reorganization of actin filaments in nonmuscle cells.


Assuntos
Cadeias Leves de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Amidas/farmacologia , Sequência de Aminoácidos , Extratos Celulares , Inibidores Enzimáticos/farmacologia , Células HeLa/efeitos dos fármacos , Células HeLa/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Dados de Sequência Molecular , Músculos/citologia , Cadeias Leves de Miosina/efeitos dos fármacos , Miosina Tipo II/efeitos dos fármacos , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/isolamento & purificação , Piridinas/farmacologia , Quinases Associadas a rho
15.
Cancer Cell Int ; 5: 31, 2005 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-16281968

RESUMO

BACKGROUND: It is known that aurora B, a chromosomal passenger protein responsible for the proper progression of mitosis and cytokinesis, is overexpressed throughout the cell cycle in cancer cells. Overexpression of aurora B produced multinuclearity and induced aggressive metastasis, suggesting that overexpressed aurora B has multiple functions in cancer development. However, the detailed dynamics and functions of overexpressed aurora B are poorly understood. RESULTS: We overexpressed GFP fused aurora B kinase in normal rat kidney epithelial cells. Using spinning disk confocal microscopy, we found that overexpressed aurora B-GFP was predominantly localized in the nucleus and along the cortex as a dot-like or short filamentous structure during interphase. Time-lapse imaging revealed that a cytoplasmic fraction of overexpressed aurora B-GFP was incorporated into the nucleus after cell division. Immunofluorescence showed that the nuclear fraction of overexpressed aurora B did not induce ectopic phosphorylation of histone H3 after cell division. The cytoplasmic fraction of overexpressed aurora B-GFP was mainly associated with cortical actin filaments but not stress fibers. Myosin II regulatory light chain, one of the possible targets for aurora B, did not colocalize with cortical aurora B-GFP, suggesting that overexpressed aurora B did not promote phosphorylation of myosin II regulatory light chain in interphase cells. CONCLUSION: We conclude that overexpressed aurora B has a specific localization pattern in interphase cells. Based on our findings, we propose that overexpressed aurora B targets the nuclear and cortical proteins during interphase, which may contribute to cancer development and tumor metastasis.

16.
BMC Cell Biol ; 5(1): 49, 2004 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-15617574

RESUMO

BACKGROUND: A number of proteins accumulate in the spindle midzone and midbody of dividing animal cells. Besides proteins essential for cytokinesis, there are also components essential for interphase functions, suggesting that the spindle midzone and/or midbody may play a role in regulating the following cell cycle. RESULTS: We microsurgically severed NRK epithelial cells during anaphase or telophase, such that the spindle midzone/midbody was associated with only one of the daughter cells. Time-lapse recording of cells severed during early anaphase indicated that the cell with midzone underwent cytokinesis-like cortical contractions and progressed normally through the interphase, whereas the cell without midzone showed no cortical contraction and an arrest or substantial delay in the progression of interphase. Similar microsurgery during telophase showed a normal progression of interphase for both daughter cells with or without the midbody. Microsurgery of anaphase cells treated with cytochalasin D or nocodazole indicated that interphase progression was independent of cortical ingression but dependent on microtubules. CONCLUSIONS: We conclude that the mitotic spindle is involved in not only the separation of chromosomes but also the regulation of cell cycle. The process may involve activation of components in the spindle midzone that are required for the cell cycle, and/or degradation of components that are required for cytokinesis but may interfere with the cell cycle.


Assuntos
Anáfase , Ciclo Celular , Fuso Acromático/fisiologia , Animais , Linhagem Celular , Células Epiteliais/citologia , Células Epiteliais/ultraestrutura , Interfase , Microcirurgia , Ratos
17.
FEBS Lett ; 550(1-3): 57-63, 2003 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-12935886

RESUMO

In this report, we cloned a novel calmodulin-kinase (CaM-KIdelta) from HeLa cells and characterized its activation mechanism. CaM-KIdelta exhibits Ca(2+)/CaM-dependent activity that is enhanced (approximately 30-fold) in vitro by phosphorylation of its Thr180 by CaM-K kinase (CaM-KK)alpha, consistent with detection of CaM-KIdelta-activating activity in HeLa cells. We also identified a novel CaM-KKbeta isoform (CaM-KKbeta-3) in HeLa cells whose activity was highly Ca(2+)/CaM-independent. Transiently expressed CaM-KIdelta exhibited enhanced protein kinase activity in HeLa cells without ionomycin stimulation. This sustained activation of CaM-KIdelta was completely abolished by Thr180Ala mutation and inhibited by CaM-KK inhibitor, STO-609, indicating a functional CaM-KK/CaM-KIdelta cascade in HeLa cells.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Transdução de Sinais/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Benzimidazóis/farmacologia , Sítios de Ligação , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Proteína Quinase Tipo 1 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/efeitos dos fármacos , Clonagem Molecular , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Células HeLa , Humanos , Ionomicina/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Isoquinolinas/farmacologia , Dados de Sequência Molecular , Naftalimidas , Fosforilação , Mutação Puntual , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Treonina/genética , Treonina/metabolismo
18.
Cell Cycle ; 11(10): 1929-37, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22544326

RESUMO

The actin cross-linking protein, α-actinin, plays a crucial role in mediating furrow ingression during cytokinesis. However, the mechanism by which its dynamics are regulated during this process is poorly understood. Here we have investigated the role of calcium sensitivity of α-actinin in the regulation of its dynamics by generating a functional calcium-insensitive mutant (EFM). GFP-tagged EFM (EFM-GFP) localized to the equatorial regions during cell division. However, the maximal equatorial accumulation of EFM-GFP was significantly smaller in comparison to α-actinin-GFP when it was expressed in normal cells and cells depleted of endogenous α-actinin. No apparent defects in cytokinesis were observed in these cells. However, F-actin levels at the equator were significantly reduced in cells expressing EFM-GFP as compared with α-actinin-GFP at furrow initiation but were recovered during furrow ingression. These results suggest that calcium sensitivity of α-actinin is required for its equatorial accumulation that is crucial for the initial equatorial actin assembly but is dispensable for cytokinesis. Equatorial RhoA localization was not affected by EFM-GFP overexpression, suggesting that equatorial actin assembly is predominantly driven by the RhoA-dependent mechanism. Our observations shed new light on the role and regulation of the accumulation of pre-existing actin filaments in equatorial actin assembly during cytokinesis.


Assuntos
Actinina/metabolismo , Cálcio/metabolismo , Citocinese/fisiologia , Actinina/antagonistas & inibidores , Actinina/genética , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Mutação , Interferência de RNA , RNA Interferente Pequeno , Ratos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Cell Cycle ; 11(10): 1938-47, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22544322

RESUMO

RUNX family proteins are critical regulators of lineage differentiation during development. The high prevalence of RUNX mutation/epigenetic inactivation in human cancer indicates a causative role for dysfunctional RUNX in carcinogenesis. This is supported by well-documented evidence of functional interaction of RUNX with components of major oncogenic or tumor suppressive signaling pathways such as TGFß and Wnt. Here, we explore the binding partners of RUNX3 proteins to further define the scope of RUNX3 function. Using a mass spectrometry-based approach, we found that RUNX3 binds to centrosomal protein rootletin. This led us to uncover the presence of RUNX proteins at the centrosome. Our findings suggest a potential function for RUNX3 during mitosis.


Assuntos
Centrossomo/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 3 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Proteínas do Citoesqueleto/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Espectrometria de Massas , Mitose , Nocodazol/farmacologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Tubulina (Proteína)/metabolismo , Proteínas Wnt/metabolismo
20.
Trends Cell Biol ; 21(7): 409-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21592797

RESUMO

In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.


Assuntos
Cromatina/metabolismo , Eritrócitos/citologia , Eritrócitos/metabolismo , Animais , Humanos , Mamíferos/sangue , Mamíferos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA