Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Metabolomics ; 16(5): 62, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-32335734

RESUMO

INTRODUCTION: Plants respond to changes in their environments through hormonal activation of a physiological cascade that redirects metabolic resources and growth. In filberts (Corylus sp.), chelated iron promotes the growth of new shoots but the mechanism(s) are not understood. OBJECTIVES: To use untargeted metabolomics and hormonomics approaches to generate novel hypotheses for the morphoregulatory role of ferric ethylenediamine-N,N'-di-(ortho-hydroxyphenyl) acetic acid (Fe-EDDHA) in filbert shoot organogenesis in vitro. METHODS: Data were generated using previously optimized standardized untargeted metabolomics protocols with time of flight mass spectrometry. Multivariate statistical tools (principal component and partial least squares discriminant analysis) did not detect significant differences. Discovery tools Significance Analysis of Microarrays (SAM), multiple linear regression analysis, Bayesian analysis, logical algorithms, machine learning, synthetic biotransformations, targeted hormonomics, and online resources including MetaboAnalyst were used. RESULTS: Starch/sucrose metabolism and shikimate pathway metabolites were increased. Dose dependent decreases were found in polyphenol metabolism, specifically ellagic acid and its methylated derivative 3,4,3'-tri-O-methylellagic acid. Hormonomics analysis revealed significant differences in phytohormones and their conjugates. FeEDDHA treatment reduced indole-3-acetic acid, abscisic acid, salicylic acid, jasmonic acid conjugates (JA-Trp, JA-Ile, OH-JA) and dihydrozeatinglucoside in regenerating explants. Serotonin (5HT) was decreased in FeEDDHA-treated regenerating tissues while the related metabolite melatonin was increased. Eight phenolic conjugates of 5HT and eight catabolites were affected by FeEDDHA indicating that metabolism to sequester, deactivate and metabolize 5HT was induced by Fe(III). Tryptophan was metabolized through kynurenine but not anthranilate. CONCLUSION: Seven novel hypotheses were generated to guide future studies to understand the regulatory control(s) of shoot organogenesis.


Assuntos
Corylus/metabolismo , Metabolômica , Brotos de Planta/metabolismo , Corylus/química , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Compostos Férricos/química , Compostos Férricos/metabolismo , Análise Multivariada , Brotos de Planta/química
2.
Phytochem Anal ; 31(5): 670-680, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32314473

RESUMO

INTRODUCTION: Nuclear magnetic resonance (NMR) spectroscopy combined with multivariate statistical analysis can provide tools to help detect differences in plant chemistry when grown under varying conditions. Hypericum perforatum, or Saint John's wort, plants are a suitable model to explore methods of discrimination between early stage plants grown in different conditions. OBJECTIVES: The purpose of this work was to develop a method for identifying differences in chemical profiles between young Hypericum perforatum plants grown under different lighting conditions. MATERIAL AND METHODS: Cuttings were grown for 3 weeks under different light conditions. Plant extracts were prepared in MeOD-d4 and analysed by 1 H-NMR. A multivariate analysis method of the NMR data was developed in an effort to determine variations in chemical profiles. RESULTS: The method identified specific metabolites as drivers of difference between the plants grown under different light conditions. STOCSY (statistical total correlation spectroscopy) and quantification of highlighted metabolites supported the findings of the multivariate analysis. Glutamine, sucrose and fructose were found to be chemical markers of light quality in this study. CONCLUSION: NMR metabolomics using a medium field instrument could find differences in plant chemistry when grown in different conditions. This method could easily be extended to benchtop instruments and be used for crop monitoring and growth condition optimisation.


Assuntos
Hypericum , Espectroscopia de Ressonância Magnética , Extratos Vegetais , Óleos de Plantas
3.
J Pineal Res ; 66(1): e12527, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30267543

RESUMO

Melatonin and serotonin are important phytochemicals enabling plants to redirect growth in response to environmental stresses. Despite much research on their biosynthetic routes, localization of their biosynthetic enzymes and recent identification of a phytomelatonin receptor, localization of the molecules themselves has to date not been possible. Elucidation of their locations in living tissues can provide an effective tool to facilitate indolamine research across systems including both plants and animals. In this study, we employed a novel technique, quantum dot nanoparticles, to directly visualize melatonin and serotonin in axenic roots. Melatonin was absorbed through epidermal cells, travelled laterally, and accumulated in endodermal and rapidly dividing pericycle cells. Serotonin was absorbed by cells proximal to the crown with rapid polar movement toward the root tip. Thermal stress disrupted localization and dispersed melatonin and serotonin across cells. These data demonstrate the natural movement of melatonin and serotonin in roots directing cell growth and suggest that plants have a mechanism to disperse the indolamines throughout tissues as antioxidants in response to environmental stresses.


Assuntos
Hypericum/metabolismo , Melatonina/metabolismo , Serotonina/metabolismo , Regulação da Expressão Gênica de Plantas , Pontos Quânticos , Estresse Fisiológico
4.
Analyst ; 145(1): 13-28, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31742261

RESUMO

Neurodegenerative diseases are influenced by environmental factors such as exposure to toxins including the cyanotoxin ß-N-methylamino-l-alanine (BMAA) that can bioaccumulate in common food sources such as fish, mussels and crabs. Accurate and precise analytical methods are needed to detect and quantify BMAA to minimize human health risks. The objective of this review is to provide a comprehensive overview of the methods used for BMAA analysis from 2003 to 2019 and to evaluate the reported performance characteristics for each method to determine the consensus data for each analytical approach and different sample matrices. Detailed searches of the database Web of Science™ (WoS) were performed between August 21st, 2018 and April 5th, 2019. Eligible studies included analytical methods for the detection and quantification of BMAA in cyanobacteria and bioaccumulated BMAA in higher trophic levels, in phytoplankton and zooplankton and in human tissues and fluids. This systematic review has limitations in that only the English language literature is included and it did not include standard operating protocols nor any method validation data that have not been made public. We identified 148 eligible studies, of which a positive result for BMAA in one or more samples analyzed was reported in 84% (125 out of 148) of total studies, 57% of HILIC studies, 92% of RPLC studies and 71% of other studies. The largest discrepancy between different methods arose from the analysis of cyanobacteria samples, where BMAA was detected in 95% of RPLC studies but only in 25% of HILIC studies. Without sufficient published validation of each method's performance characteristics, it is difficult to establish each method as fit for purpose for each sample matrix. The importance of establishing methods as appropriate for their intended use is evidenced by the inconsistent reporting of BMAA across environmental samples, despite its prevalence in diverse ecosystems and food webs.


Assuntos
Diamino Aminoácidos/análise , Toxinas Bacterianas/análise , Técnicas de Química Analítica/métodos , Animais , Toxinas de Cianobactérias , Humanos
5.
Planta Med ; 85(9-10): 781-796, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31096276

RESUMO

The phytochemical diversity of Cannabis chemovars is not well understood, and many chemovars were created in informal breeding programs without records of parentage or the criteria for selection. Key criteria for selection sometimes included aroma notes and visual cues, which some breeders associated with pharmacological activity. We hypothesized that the process of selection for scents believed to be related to specific tetrahydrocannabinol levels has resulted in modified terpene biosynthesis in these chemovars. Thirty-two cannabinoids, 29 monoterpenes and 38 sesquiterpenes were measured in 33 chemovars from 5 licensed producers. A classification system based on cannabinoid content was used with targeted metabolomic tools to determine relationships in the phytochemistry. Three monoterpenes, limonene, ß-myrcene, and α-pinene, and two sesquiterpenes, caryophyllene and humulene, were abundant in the majority of chemovars. Nine terpenes were present in tetrahydrocannabinol-dominant chemovars. Three monoterpenes and four sesquiterpenes were predominantly found in cannabidiol-containing chemovars. Low abundance terpenes may have been the aromatic cues identified by breeders. The medicinal activity of some of the terpenes is likely to contribute to the pharmacological effect of specific chemovars. Together, these data demonstrate the synergy of compounds in Cannabis chemovars and point to the need for additional research to understand the phytochemical complexity.


Assuntos
Canabinoides/análise , Cannabis/química , Cannabis/metabolismo , Odorantes/análise , Terpenos/análise , Canabidiol/análise , Canabinoides/metabolismo , Cannabis/classificação , Dronabinol/análise , Metabolômica/métodos , Melhoramento Vegetal , Terpenos/metabolismo
6.
J Pineal Res ; 64(2)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29149453

RESUMO

Melatonin and serotonin are important signaling and stress mitigating molecules that play important roles across growth and development in plants. Despite many well-documented responses, a systematic investigation of the entire metabolic pathway (tryptophan, tryptamine, and N-acetylserotonin) does not exist, leaving many open questions. The objective of this study was to determine the responses of Hypericum perforatum (L.) to melatonin, serotonin, and their metabolic precursors. Two well-characterized germplasm lines (#4 and 112) created by mutation and a haploid breeding program were compared to wild type to identify specific responses. Germplasm line 4 has lower regenerative and photosynthetic capacity than either wild type or line 112, and there are documented significant differences in the chemistry and physiology of lines 4 and 112. Supplementation of the culture media with tryptophan, tryptamine, N-acetylserotonin, serotonin, or melatonin partially reversed the regenerative recalcitrance and growth impairment of the germplasm lines. Quantification of phytohormones revealed crosstalk between the indoleamines and related phytohormones including cytokinin, salicylic acid, and abscisic acid. We hypothesize that melatonin and serotonin function in coordination with their metabolites in a cascade of phytochemical responses including multiple pathways and phytohormone networks to direct morphogenesis and protect photosynthesis in H. perforatum.


Assuntos
Hypericum/crescimento & desenvolvimento , Hypericum/metabolismo , Melatonina/metabolismo , Desenvolvimento Vegetal/fisiologia , Serotonina/metabolismo , Hypericum/efeitos dos fármacos , Melatonina/farmacologia , Desenvolvimento Vegetal/efeitos dos fármacos , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Sementes/crescimento & desenvolvimento , Serotonina/farmacologia , Transdução de Sinais/fisiologia
7.
Planta Med ; 84(16): 1213-1218, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29940660

RESUMO

Piper methysticum (Kava) is a plant whose roots are used in the preparation of traditional beverages with spiritual, medicinal, and social importance for the Pacific Islanders. Kava is also sold as a herbal supplement or recreational beverage consumed for its mild inebriating effect in Europe and North America. With an ongoing interest in the safety and quality of kava products, it is necessary to develop a validated method for determination of kava chemical composition to ensure confidence in quality assessment. Thus, an high-performance liquid chromatography with ultraviolet detection (HPLC-UV) method was developed, optimized, and validated for determining six major kavalactones and three flavokavains in kava raw materials and finished products based on AOAC single-laboratory validation guidelines. This is the first fully validated analytical method for measuring kavalactones and flavokavains in a single run. The separation of the analytes was achieved in 10 min with an Agilent Poroshell C18 column using gradient separation. The sample was extracted with methanol first and then acetone. The signals were detected at 240 nm and 355 nm. The limit of quantification was under 1.2 µg/mL (0.3 mg/g) for kavalactones and under 0.35 µg/mL (0.01 mg/g) for flavokavains. The Horwitz ratio values described ranged from 0.3 to 1.82. The spike recovery experiments showed an accuracy between 92 and 105% for all analytes. The results of the study demonstrate that the method is fit for the purpose of determining methysticin, dihydromethysticin, kavain, dihydrokavain, yangonin, desmethoxyyangonin, flavokavain A, flavokavain B, and flavokavain C in kava raw material and finished products (dry-filled capsule, liquid phytocaps, and tincture).


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Kava/química , Lactonas/análise , Calibragem , Suplementos Nutricionais/análise , Lactonas/química , Limite de Detecção , Raízes de Plantas/química , Piranos/análise , Pironas/análise
8.
Anal Bioanal Chem ; 409(12): 3153-3163, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28233028

RESUMO

There is an explosion in the number of labs analyzing cannabinoids in marijuana (Cannabis sativa L., Cannabaceae) but existing methods are inefficient, require expert analysts, and use large volumes of potentially environmentally damaging solvents. The objective of this work was to develop and validate an accurate method for analyzing cannabinoids in cannabis raw materials and finished products that is more efficient and uses fewer toxic solvents. An HPLC-DAD method was developed for eight cannabinoids in cannabis flowers and oils using a statistically guided optimization plan based on the principles of green chemistry. A single-laboratory validation determined the linearity, selectivity, accuracy, repeatability, intermediate precision, limit of detection, and limit of quantitation of the method. Amounts of individual cannabinoids above the limit of quantitation in the flowers ranged from 0.02 to 14.9% w/w, with repeatability ranging from 0.78 to 10.08% relative standard deviation. The intermediate precision determined using HorRat ratios ranged from 0.3 to 2.0. The LOQs for individual cannabinoids in flowers ranged from 0.02 to 0.17% w/w. This is a significant improvement over previous methods and is suitable for a wide range of applications including regulatory compliance, clinical studies, direct patient medical services, and commercial suppliers.


Assuntos
Canabinoides/análise , Cannabis/química , Cromatografia Líquida de Alta Pressão/métodos , Flores/química , Química Verde/métodos , Limite de Detecção , Reprodutibilidade dos Testes , Solventes/química
9.
Planta Med ; 82(14): 1225-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27392246

RESUMO

In the past decades, the use of traditional medicine has increased globally, leading to a booming herbal medicine and dietary supplement industry. The increased popularity of herbal products has led to a rise in demand for botanical raw materials. Accurate identification of medicinal herbs is a legal requirement in most countries and prerequisite for delivering a quality product that meets consumer expectations. Traditional identification methods include botanical taxonomy, macroscopic and microscopic examination, and chemical methods. Advances in the identification of biological species using DNA-based techniques have led to the development of a DNA marker-based platform for authentication of plant materials. DNA barcoding, in particular, has been proposed as a means to identify herbal ingredients and to detect adulteration. However, general barcoding techniques using universal primers have been shown to provide mixed results with regard to data accuracy. Further technological advances such as mini-barcodes, digital polymerase chain reaction, and next generation sequencing provide additional tools for the authentication of herbs, and may be successful in identifying processed ingredients used in finished herbal products. This review gives an overview on the strengths and limitations of DNA barcoding techniques for botanical ingredient identification. Based on the available information, we do not recommend the use of universal primers for DNA barcoding of processed plant material as a sole means of species identification, but suggest an approach combining DNA-based methods using genus- or species-specific primers, chemical analysis, and microscopic and macroscopic methods for the successful authentication of botanical ingredients used in the herbal dietary supplement industry.


Assuntos
Código de Barras de DNA Taxonômico , Suplementos Nutricionais , Medicina Herbária , Plantas Medicinais/classificação , DNA de Plantas , Suplementos Nutricionais/normas , Medicina Herbária/normas , Plantas Medicinais/genética , Reprodutibilidade dos Testes
10.
Amino Acids ; 47(4): 847-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588988

RESUMO

Protein deficiency has been observed as a leading cause of malnutrition and child death in the tropics. The current study evaluated the protein quality of 49 important breadfruit cultivars (41 Artocarpus altilis and 8 hybrids of A. altilis × A. mariannensis). While significant differences were found between cultivars, all varieties contained a full spectrum of the essential amino acids and are especially rich in phenylalanine, leucine, isoleucine, and valine. The cultivar Ma'afala contained significantly higher total essential amino acid content than other varieties and higher-quality protein than staples such as corn, wheat, rice, soybean, potato, and pea.


Assuntos
Aminoácidos/análise , Artocarpus/química , Proteínas de Plantas/análise , Artocarpus/classificação , Abastecimento de Alimentos , Valor Nutritivo
11.
J Nat Prod ; 78(4): 953-66, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25751407

RESUMO

Metabolomics is the qualitative and quantitative analysis of all of the small molecules in a biological sample at a specific time and influence. Technologies for metabolomics analysis have developed rapidly as new analytical tools for chemical separations, mass spectrometry, and NMR spectroscopy have emerged. Plants have one of the largest metabolomes, and it is estimated that the average plant leaf can contain upward of 30 000 phytochemicals. In the past decade, over 1200 papers on plant metabolomics have been published. A standard metabolomics data set contains vast amounts of information and can either investigate or generate hypotheses. The key factors in using plant metabolomics data most effectively are the experimental design, authentic standard availability, extract standardization, and statistical analysis. Using cranberry (Vaccinium macrocarpon) as a model system, this review will discuss and demonstrate strategies and tools for analysis and interpretation of metabolomics data sets including eliminating false discoveries and determining significance, metabolite clustering, and logical algorithms for discovery of new metabolites and pathways. Together these metabolomics tools represent an entirely new pipeline for phytochemical discovery.


Assuntos
Metabolômica , Modelos Biológicos , Vaccinium macrocarpon/química , Descoberta de Drogas , Frutas/química , Ressonância Magnética Nuclear Biomolecular
12.
J AOAC Int ; 98(6): 1559-65, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26651568

RESUMO

A single-laboratory validation study was completed for the determination of ß-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 µg/g, while AEG and DAB were found at concentrations as high as 100 µg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process.


Assuntos
Diamino Aminoácidos/análise , Aminobutiratos/análise , Cromatografia Líquida de Alta Pressão/métodos , Cianobactérias/metabolismo , Análise de Alimentos/métodos , Glicina/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Toxinas de Cianobactérias , Microbiologia de Alimentos , Glicina/análise , Limite de Detecção
13.
Amino Acids ; 46(11): 2553-9, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25096519

RESUMO

N-ß-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding.


Assuntos
Diamino Aminoácidos/química , Aminoácidos/química , Proteínas/química , Idoso , Idoso de 80 Anos ou mais , Aminobutiratos/química , Encéfalo/patologia , Sistema Livre de Células , Cromatografia Líquida , Toxinas de Cianobactérias , DNA/química , Ditiotreitol/química , Escherichia coli/enzimologia , Feminino , Glicina/análogos & derivados , Glicina/química , Humanos , Hidrólise , Masculino , Desnaturação Proteica , Dobramento de Proteína , Dodecilsulfato de Sódio/química , Espectrometria de Massas em Tandem
14.
J Pineal Res ; 56(3): 238-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24350934

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) has been implicated in abiotic and biotic stress tolerance in plants. However, information on the effects of melatonin in cold-stress tolerance in vivo is limited. In this study, the effect of melatonin was investigated in the model plant Arabidopsis thaliana challenged with a cold stress at 4°C for 72 and 120 hr. Melatonin-treated plants (10 and 30 µm) had significantly higher fresh weight, primary root length, and shoot height compared with the nontreated plants. To aid in the understanding of the role of melatonin in alleviating cold stress, we investigated the effects of melatonin treatment on the expression of cold-related genes. Melatonin up-regulated the expression of C-repeat-binding factors (CBFs)/Drought Response Element Binding factors (DREBs), a cold-responsive gene, COR15a, a transcription factor involved in freezing and drought-stress tolerance CAMTA1 and transcription activators of reactive oxygen species (ROS)-related antioxidant genes, ZAT10 and ZAT12, following cold stress. The up-regulation of cold signaling genes by melatonin may stimulate the biosynthesis of cold-protecting compounds and contribute to the increased growth of plants treated with exogenous melatonin under cold stress.


Assuntos
Temperatura Baixa/efeitos adversos , Melatonina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Arabidopsis , Proteínas de Arabidopsis/biossíntese , Proteínas de Ligação ao Cálcio/biossíntese , Regulação da Expressão Gênica de Plantas , Transativadores/biossíntese , Fatores de Transcrição/biossíntese , Regulação para Cima
15.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580836

RESUMO

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Assuntos
Diamino Aminoácidos , Decápodes , Síndromes Neurotóxicas , Animais , Masculino , Feminino , Humanos , Nephropidae/metabolismo , Ecossistema , Neurotoxinas/toxicidade , Diamino Aminoácidos/metabolismo , Alimentos Marinhos/análise , Decápodes/metabolismo , beta-Alanina
16.
Toxins (Basel) ; 16(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668594

RESUMO

Lake Winnipeg in Manitoba, Canada is heavily impacted by harmful algal blooms that contain non-protein amino acids (NPAAs) produced by cyanobacteria: N-(2-aminoethyl)glycine (AEG), ß-aminomethyl-L-alanine (BAMA), ß-N-methylamino-L-alanine (BMAA), and 2,4-diaminobutyric acid (DAB). Our objective was to investigate the impact of microbial diversity on NPAA production by cyanobacteria using semi-purified crude cyanobacterial cultures established from field samples collected by the Lake Winnipeg Research Consortium between 2016 and 2021. NPAAs were detected and quantified by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) using validated analytical methods, while Shannon and Simpson alpha diversity scores were determined from 16S rRNA metagenomic sequences. Alpha diversity in isolate cultures was significantly decreased compared to crude cyanobacterial cultures (p < 0.001), indicating successful semi-purification. BMAA and AEG concentrations were higher in crude compared to isolate cultures (p < 0.0001), and AEG concentrations were correlated to the alpha diversity in cultures (r = 0.554; p < 0.0001). BAMA concentrations were increased in isolate cultures (p < 0.05), while DAB concentrations were similar in crude and isolate cultures. These results demonstrate that microbial community complexity impacts NPAA production by cyanobacteria and related organisms.


Assuntos
Cianobactérias , Lagos , Lagos/microbiologia , Cianobactérias/metabolismo , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Manitoba , Proliferação Nociva de Algas , Aminoácidos/análise , Aminoácidos/metabolismo , Espectrometria de Massas em Tandem , Biodiversidade , Microbiota , Toxinas de Cianobactérias
17.
Planta Med ; 79(14): 1370-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23877920

RESUMO

Ligusticum canbyi (J.M. Coult & Rose) is a medicinal understory forest species used in traditional rituals and ceremonies for spiritual enlightenment and improved mental health. Very little is known about the phytochemical complexity or diversity of L. canbyi tissues or extracts. The current study was undertaken to determine whether Ligusticum tissues and extracts contain specifically targeted biologically active phytochemicals such as: melatonin, serotonin, Z-ligustilide, E-3-butylidenephthalide, and ferulic acid and to investigate the untargeted phytochemical complexity of the entire L. canbyi metabolome. The results of these studies identified melatonin and serotonin in roots and shoots of L. canbyi and L. porteri. Z-ligustilide, E-butylidenephthalide, and ferulic acid were quantified in roots and shoots of L. canbyi. Metabolomic analysis detected approximately 34,000 compounds in each L. canbyi extract, and predictive analysis suggests the presence of more than 70 putative phthalide metabolites. The relative contribution of the known metabolites and the unknown markers to the antioxidant potential of root and shoot tissues were compared, and it was determined that the majority of the antioxidant capacity could be attributed to ferulic acid in the tissues. These data provide new understandings of the phytomedicinal composition and potential mechanisms of activity of L. canbyi extracts and tissues.


Assuntos
Antioxidantes/farmacologia , Ácidos Cumáricos/farmacologia , Ligusticum/química , Anidridos Ftálicos/farmacologia , Antioxidantes/análise , Ácidos Cumáricos/análise , Descoberta de Drogas , Indóis/análise , Indóis/farmacologia , Melatonina/análise , Metaboloma , Metabolômica/métodos , Anidridos Ftálicos/análise , Raízes de Plantas , Brotos de Planta , Serotonina/análise
18.
Anal Chem ; 84(18): 7946-53, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22905767

RESUMO

ß-methylamino-l-alanine (BMAA) is a naturally occurring nonprotein amino acid originally discovered in cycad seeds and traditional foods of the Chamorro people of Guam. Recent research has implicated BMAA as a potential factor in neurodegenerative disease and described the production of BMAA in cyanobacteria, but conflicting results have complicated the interpretation of data. We hypothesized that the reactivity of BMAA with metal ions in the sample matrix and the formation of metal adducts in electrospray ionization mass spectrometry (MS) analysis confound results. Dilute solutions of TCA, MgCl(2), NaCl, CuCl(2), ZnCl(2) (0.01 M), or artificial ocean water (Instant Ocean, 3.5 g/L) reduced the signal attributable to the BMAA M + H(+) peak by 78-99.7%. The degree of adduct formation was significantly affected by MS settings such as induction voltage. A number of the detected ion peaks in BMAA standards were consistent with the formation of metal-BMAA complexes in addition to the adduct formation. A standard of Zn(BMAA)(2) was synthesized, and the effects of sample preparation, derivatization, column chromatography, pH, and interactions with serine were determined. Together, these data demonstrate that sample matrix, formation of adducts, and mass spectrometry settings complicate analysis of BMAA, that analysis by detection of the parent ion and daughter ion fragmentation patterns are highly susceptible to false negative findings, and that failure to detect BMAA cannot be considered proof of absence of the compound.


Assuntos
Diamino Aminoácidos/análise , Cromatografia Líquida de Alta Pressão , Complexos de Coordenação/química , Espectrometria de Massas por Ionização por Electrospray , Cianobactérias/metabolismo , Toxinas de Cianobactérias , Concentração de Íons de Hidrogênio , Zinco/química
19.
Planta Med ; 78(6): 630-40, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22337317

RESUMO

There is a long history of use and modern commercial importance of large and small cranberries in North America. The central objective of the current research was to characterize and compare the chemical composition of 2 west coast small cranberry species traditionally used (Vaccinium oxycoccos L. and Vaccinium vitis-idaea L.) with the commercially cultivated large cranberry (Vaccinium macrocarpon Ait.) indigenous to the east coast of North America. V. oxycoccos and V. macrocarpon contained the 5 major anthocyanins known in cranberry; however, the ratio of glycosylated peonidins to cyanidins varied, and V. vitis-idaea did not contain measurable amounts of glycosylated peonidins. Extracts of all three berries were found to contain serotonin, melatonin, and ascorbic acid. Antioxidant activity was not found to correlate with indolamine levels while anthocyanin content showed a negative correlation, and vitamin C content positively correlated. From the metabolomics profiles, 4624 compounds were found conserved across V. macrocarpon, V. oxycoccoS, and V. vitis-idaea with a total of approximately 8000-10 000 phytochemicals detected in each species. From significance analysis, it was found that 2 compounds in V. macrocarpoN, 3 in V. oxycoccos, and 5 in V. vitis-idaea were key to the characterization and differentiation of these cranberry metabolomes. Through multivariate modeling, differentiation of the species was observed, and univariate statistical analysis was employed to provide a quality assessment of the models developed for the metabolomics data.


Assuntos
Antocianinas/análise , Antioxidantes/análise , Metabolômica/métodos , Vaccinium/química , Antocianinas/química , Ácido Ascórbico/análise , Colúmbia Britânica , Frutas/química , Glicosilação , Melatonina/análise , Melatonina/química , Análise Multivariada , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Análise de Componente Principal , Sensibilidade e Especificidade , Serotonina/análise , Serotonina/química , Especificidade da Espécie , Vaccinium macrocarpon/química , Vaccinium vitis-Idaea/química
20.
Sci Total Environ ; 845: 157341, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842164

RESUMO

Climate change is now a reality and is altering ecosystems, with Canada experiencing 2-4 times the global average rate of warming. This will have a critical impact on berry cultivation and horticulture. Enhancing our understanding of how wild and cultivated berries will perform under changing climates will be essential to mitigating impacts on ecosystems, culture and food security. Our objective was to predict the impact of climate change on habitat suitability of four berry producing Vaccinium species: two species with primarily northern distributions (V. uliginosum, V. vitis-idaea), one species with a primarily southern distribution (V. oxycoccos), and the commercially cultivated V. macrocarpon. We used the maximum entropy (Maxent) model and the CMIP6 shared socioeconomic pathways (SSPs) 126 and 585 projected to 2041-2060 and 2061-2080. Wild species showed a uniform northward progression and expansion of suitable habitat. Our modeling predicts that suitable growing regions for commercial cranberries are also likely to shift with some farms becoming unsuitable for the current varieties and other regions becoming more suitable for cranberry farms. Both V. macrocarpon and V. oxycoccos showed a high dependence on precipitation-associated variables. Vaccinium vitis-idaea and V. uliginosum had a greater number of variables with smaller contributions which may improve their resilience to individual climactic events. Future competition between commercial cranberry farms and wild berries in protected areas could lead to conflicts between agriculture and conservation priorities. New varieties of commercial berries are required to maintain current commercial berry farms.


Assuntos
Frutas , Vaccinium macrocarpon , Agricultura , Mudança Climática , Ecossistema , Segurança Alimentar , Extratos Vegetais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA