RESUMO
The agri-food industry is at the centre of the circular economy, since the co-composting of its residual flows allows their management and adds value producing fertilisers. In this work, six composting piles were prepared combining agri-food sludge (AS), different fresh vegetable wastes (pepper waste (P), tomato waste (T), and leek waste (L), and, as bulking agents, vine shoot pruning (VS), garlic stalks (GS) and avocado leaves (AL)). Classical physico-chemical and chemical determinations and advanced instrumental methods (excitation-emission fluorescence (EEM) and gravimetric (TG, DTG and DTA) techniques) were used and compared to assess organic matter evolution and evaluate the quality of the composts obtained. The thermal profiles of the composting processes were viable to show the stabilization of the agri-food sludge with the different materials tested in the mixtures, reaching adequate levels of stabilization of organic matter. Preferential degradation of peptides and proteins was observed by fluorescence. This seemed to induce a limitation in the biodegradation of the remaining organic matter, indicating that these biomolecules are key in composting dynamics, acting as limiting components during the process. The results from thermogravimetric analysis indicated the degradation of labile compounds (e.g., carbohydrates and proteins), the most recalcitrant material becoming predominant at the maturity stage of the composting process. The rise in the thermogravimetric parameter R2 was associated with the increase in the concentration of more refracting compounds, which need more energy for their decomposition.
Assuntos
Compostagem , Fertilizantes , Resíduos Industriais/análise , Peptídeos , SoloRESUMO
BACKGROUND: The objective structured clinical examination (OSCE) is a test used throughout Spain to evaluate the clinical competencies, decision making, problem solving, and other skills of sixth-year medical students. OBJECTIVE: The main goal of this study is to explore the possible applications and utility of portable eye-tracking systems in the setting of the OSCE, particularly questions associated with attention and engagement. METHODS: We used a portable Tobii Glasses 2 eye tracker, which allows real-time monitoring of where the students were looking and records the voice and ambient sounds. We then performed a qualitative and a quantitative analysis of the fields of vision and gaze points attracting attention as well as the visual itinerary. RESULTS: Eye-tracking technology was used in the OSCE with no major issues. This portable system was of the greatest value in the patient simulators and mannequin stations, where interaction with the simulated patient or areas of interest in the mannequin can be quantified. This technology proved useful to better identify the areas of interest in the medical images provided. CONCLUSIONS: Portable eye trackers offer the opportunity to improve the objective evaluation of candidates and the self-evaluation of the stations used as well as medical simulations by examiners. We suggest that this technology has enough resolution to identify where a student is looking at and could be useful for developing new approaches for evaluating specific aspects of clinical competencies.
Assuntos
Competência Clínica/normas , Avaliação Educacional/métodos , Tecnologia de Rastreamento Ocular/normas , Simulação de Paciente , Estudantes de Medicina/estatística & dados numéricos , Feminino , Humanos , MasculinoRESUMO
The objective of this work was to study the possibilities to manage and recycle dog faeces (DF) using biological processes, using two approaches: composting (C) and anaerobic digestion (AD). Thus, different experiments have been carried out: i) two laboratory/pilot scale experiments (self-heating and composting tests) and one, on a commercial scale; ii) two AD experiments. In both approaches, municipal waste such as the organic fraction of municipal solid waste (OMSW) and urban pruning waste (GW) were used as co-substrates. The results obtained regarding the optimization of the composting process indicated that the best strategy was the use of a 1:2 ratio of DF, a 1:4 ratio of OMSW, and a 1:4 ratio of GW, according to the thermal parameters studied (temperature and cumulative quadratic exothermic index (EXI2)), and the quality of the compost obtained. A potentially limiting factor of the process was the high salinity of the DF waste. In addition, AD experiments were performed on DF, OMSW, and GW wastes in controlled anaerobic systems at a laboratory scale. In these experiments, the biogas production obtained was 229â¯mL biogas/g total solids for the DF residue, 248â¯mL biogas/g total solids for GW, and 263â¯mL biogas/g total solids for OMSW. The co-digestion yields a clear improvement in the efficiency of the process against the use of a single residue, increasing the production of biogas by up to 27% with respect to that of the DF waste alone during the first 25 days of AD. The results obtained with these procedures have shown the possibilities to add value to this waste in an urban context where the circular economy represents an increasingly favourable scenario, including the generation of fertilisers and/or energy at a local scale, provided that the collection of dog faeces is optimized.
Assuntos
Compostagem , Eliminação de Resíduos , Anaerobiose , Animais , Biocombustíveis , Reatores Biológicos , Cães , Fezes , Metano , Resíduos SólidosRESUMO
In the Mediterranean countries, there is an increasing production of date palm wastes (Phoenix dactylifera L.), not only due to the raising production of date palm fruits, but also derived from the maintenance of urban and peri-urban green areas, especially in those affected by red palm weevil (Rhynchophorus ferrugineus). The management of this increasing volume of green wastes usually concludes with a controlled disposal that implies an important loss of resources, in terms of organic matter, nutrients and energy. In addition, the rise of wastewater generation and the incentive of the wastewater treatment processes have derived in an increase of the amount of the sludge produced, which makes difficult its management. This work studies the feasibility of co-composting palm wastes with sludge from the urban and agri-food sectors as alternative treatment to manage these organic waste streams and to obtain added-value compost. For this, four mixtures (P1, P2, P3 and P4) were prepared using as main component palm leave waste (PL) mixed with different types of sludge. In the piles P1, P2 and P3, sewage sludge (SS) was used as co-composting agent, while agri-food sludge (AS) was used in P4. Throughout composting, the thermal profile of the composting piles was assessed, as were physical, chemical, physico-chemical and maturity parameters. In addition, the changes in water-soluble organic matter were assessed using chemical analytical methods and the excitation-emission matrix (EEM) fluorescence spectroscopy. The results obtained showed the viability of the co-composting process to obtain end-products with adequate maturity degree and physical characteristics for their potential use as substrates, except for the salt contents that can limit their use in some agricultural sectors.
Assuntos
Compostagem , Phoeniceae , Esgotos , Agricultura , Biomassa , SoloRESUMO
Although ultrafiltration membranes have been used for the separation of macromolecules and colloids from solutions, this process has a limited application in the removal of dyes present in coloured discharges of textile industry, as these typically have much lower molecular weight than the molecular cut-off of the membranes (MWCO). In the present work, we have evaluated the behaviour of a polysulfone ultrafiltration membrane in the removal of different dyes from aqueous solutions (Congo red, methyl green and amaranth). Different variables (tangential flow rate, concentration of dye and pH of the feed) were studied to determine their influence on the separation processes (permeate flux and rejection coefficient). The results show that Congo red is easily removed with a GR60PP membrane (MWCO = 25 kDa), whereas methyl green and amaranth show rejection coefficient values of approximately 25.78% and 13.85%, respectively, at neutral pH. Also, an interesting effect is observed for the rejection coefficient for methyl green at different pH values. In addition, several treatments were performed to the membrane so as to modify its surface, trying to improve the values obtained for permeate flux and rejection rate.
Assuntos
Corantes , Ultrafiltração , Membranas Artificiais , Polímeros , SulfonasRESUMO
Much is currently being studied on the negative visual impact associated to the installation of large wind turbines or photovoltaic farms. However, methodologies for quantitatively assessing landscape impact are scarce. In this work we used electroencephalographic (EEG) recordings to investigate the brain activity of 14 human volunteers when looking at the same landscapes with and without wind turbines, solar panels and nuclear power plants. Our results showed no significant differences for landscapes with solar power systems or without them, and the same happened for wind turbines, what was in agreement with their subjective scores. However, there were clear and significant differences when looking at landscapes with and without nuclear power plants. These differences were more pronounced around a time window of 376-407 msec and showed a clear right lateralization for the pictures containing nuclear power plants. Although more studies are still needed, these results suggest that EEG recordings can be a useful procedure for measuring visual impact.
Assuntos
Energia Renovável , Percepção Visual , Vento , Eletroencefalografia , Humanos , Centrais ElétricasRESUMO
Most photoprocesses follow a pseudo first order kinetic law and, commonly, the kinetic parameter depends on the initial concentration of the substrate. In this work, a kinetic model, which explains this dependence on the substrate concentration and on the other operational variables, has been developed. In the model, mass transfer of substrate from the bulk solution to the wall of the photoreactor was assumed as the step determining the rate of the process. To check the model, methylene blue (MB) has been used as model substrate and photodegradation experiments have been carried out in an exciplex KrCl flow-through photoreactor, It was observed that the methylene blue conversion improved with a decrease in its initial concentration, in good agreement with the model. Also, by fitting the experimental data to the model, high correlation coefficients and a high degree of agreement between experimental and calculated conversion was obtained, which validates the model.
Assuntos
Azul de Metileno/química , Modelos Teóricos , Fotobiorreatores , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Corantes/química , Corantes/metabolismo , Cinética , Azul de Metileno/metabolismo , Processos Fotoquímicos , Soluções , Poluentes Químicos da Água/química , Purificação da Água/instrumentação , Purificação da Água/métodosRESUMO
A continuous tank reactor was used to remove 4-chlorophenol from aqueous solutions, using immobilized soybean peroxidase and hydrogen peroxide. The influence of operational variables (enzyme and substrate concentrations and spatial time) on the removal efficiency was studied. By using the kinetic law and the intrinsic kinetic parameters obtained in a previous work with a discontinuous tank reactor, the mass-balance differential equations of the transient state reactor model were solved and the theoretical conversion values were calculated. Several experimental series were used to obtain the values of the remaining model parameters by numerical calculation and using an error minimization algorithm. The model was checked by comparing the results obtained in some experiments (not used for the determination of the parameters) and the theoretical ones. The good concordance between the experimental and calculated conversion values confirmed that the design model can be used to predict the transient behaviour of the reactor.
Assuntos
Clorofenóis/metabolismo , Modelos Químicos , Peroxidase/metabolismo , Poluentes Químicos da Água/metabolismo , DifusãoRESUMO
Aniline is commonly used in a number of industrial processes. It is known to be a harmful and persistent pollutant and its presence in wastewater requires treatment before disposal. In this paper, the effectiveness of nanofiltration (NF) to remove aniline from aqueous solutions is studied in a flat membrane test module using two thin-layer composite membranes of polyamide (NF97 and NF99HF). The influence of different operational variables (applied pressure, feed concentration and pH) on the removal of aniline from synthetic aqueous solutions was analysed. The experimental NF results are compared with results previously obtained by reverse osmosis. Based on this comparative study, the effective order for aniline rejection is: HR98PP > NF97 > DESAL3B > SEPA-MS05 > NF99HF.
Assuntos
Compostos de Anilina/isolamento & purificação , Filtração/instrumentação , Membranas Artificiais , Nylons , Poluentes Químicos da Água/isolamento & purificaçãoRESUMO
The enzymatic method for synthesising polyglycerol polyricinoleate (PGPR), a food additive named E-476, was successfully carried out in the presence of immobilised Rhizopus oryzae lipase in a solvent-free medium. The great advantage of using the commercial preparation of R. oryzae lipase is that it is ten times cheaper than the commercial preparation of R. arrhizus lipase, the biocatalyst used in previous studies. The reaction, which is really a reversal of hydrolysis, takes place in the presence of a very limited amount of aqueous phase. Immobilisation of the lipase by physical adsorption onto an anion exchange resin provided good results in terms of activity, enzyme stability and reuse of the immobilised derivative. It has been established that the adsorption of R. oryzae lipase on Lewatit MonoPlus MP 64 follows a pseudo-second order kinetics, which means that immobilisation is a process of chemisorption, while the equilibrium adsorption follows a Langmuir isotherm. The use of this immobilised derivative as catalyst for obtaining PGPR under a controlled atmosphere in a vacuum reactor, with a dry nitrogen flow intake, allowed the synthesis of a product with an acid value lower than 6 mg KOH/g, which complies with the value established by the European Commission Directive. This product also fulfils the European specifications regarding the hydroxyl value and refractive index given for this food additive, one of whose benefits, as proved in our experiments, is that it causes a drastic decrease in the viscosity (by 50 %) and yield stress (by 82 %) of chocolate, comparable to the impact of customary synthesised PGPR.
Assuntos
Proteínas Fúngicas/química , Glicerol/química , Lipase/química , Polímeros/química , Rhizopus/enzimologia , Ácidos Ricinoleicos/química , EsterificaçãoRESUMO
Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.
Assuntos
Clorofenóis/isolamento & purificação , Poluentes Ambientais/isolamento & purificação , Adsorção , Clorofenóis/toxicidade , Poluentes Ambientais/toxicidade , Oxirredução , Peroxidase , Proteínas de SojaRESUMO
A comparative study of three plant peroxidases, horseradish (HRP), soybean (SBP) and artichoke (AKPC), was carried out to select the most appropriate one for 4-chlorophenol treatment in an ultrafiltration membrane reactor. Soybean peroxidase showed the highest enzymatic activity, followed by HRP and AKPC. The same tendency was observed in a discontinuous tank reactor, where SBP attained more than 90% of4-chlorophenol removal within the pH range tested. The optimum temperature was 30 degrees C, with SBP showing highest thermostability. With the ultrafiltration membrane reactor, SBP attained the highest operational stability, with 4-chlorophenol conversions of around 90% in the permeate stream for up to 200 minutes. Finally, permeate samples were analysed and no significant amount of enzyme was detected, so the observed loss of activity, less pronounced with SBP, was attributed to enzyme adsorption on the polymeric products deposited on the membrane surface. Soybean peroxidase was selected as the most appropriate peroxidase for future research.
Assuntos
Reatores Biológicos , Peroxidases/metabolismo , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Cynara scolymus/enzimologia , Peroxidase do Rábano Silvestre/metabolismo , Concentração de Íons de Hidrogênio , Glycine max/enzimologiaRESUMO
Immobilized derivatives of soybean peroxidase, covalently bound to a glass support, were used in a continuous stirred tank reactor in series, in order to study the removal of two phenolic compounds: phenol and 4-chlorophenol. The use of two reactors in series, rather than one continuous tank, improved the removal efficiencies of phenol and 4-chlorophenol. The distribution of different amounts of enzyme between the two tanks showed that the relative distributions influenced the removal efficiency reached and the degree of the enzyme deactivation. The highest removal percentages were reached at the outlet of the second tank for a distribution of 50% of the enzyme in each tank. However, with a distribution of 75% in the first tank and 25% in the second, the elimination percentage in the second tank was slightly lower than in the previous case, and the effects of deactivation of the enzyme in the first tank were less pronounced. In all the distributions assayed it was observed that the first tank acts as a filter for the second one, which receives a feed with a smaller load of phenolic compounds, thus diminishing enzyme deactivation in the second tank.
Assuntos
Reatores Biológicos , Clorofenóis/química , Peroxidase/química , Fenol/química , Proteínas de Soja/química , Enzimas Imobilizadas/química , Purificação da ÁguaRESUMO
Phenolic compounds and their derivatives are very common pollutants in wastewaters. Among the methods described for their removal, pressure-driven membrane processes are considered as a reliable alternative. Our research group has previously studied phenol removal in reverse osmosis (RO) conditions and obtained very low rejection percentages. Subsequently, when low reverse osmosis (LRO) conditions were studied, the organic rejection percentages improved. To further our knowledge in this respect, the main objective of this work was to study the behaviour of the polyamide thin-film composite membrane RO98pHt used for phenol removal in RO and LRO conditions. The influence of different operating pressures, phenol feed concentrations and pH on permeate flux and phenol rejection was studied. Low reverse osmosis conditions led to higher phenol rejection percentages in all the assayed conditions, suggesting that other factors related to the molecular characteristics of the organic molecules, such as solubility, acidity and hydrogen bonding capacity, play an important role in the rejection percentage attained. As expected, permeate flux was greater in RO conditions.
Assuntos
Membranas Artificiais , Nylons/química , Fenóis/química , Fenóis/isolamento & purificação , Ultrafiltração/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Teste de Materiais , Osmose , Reologia/métodosRESUMO
During the last two decades, the method most widely used to manage olive mill wastewater (OMW) derived from olive oil production has been its disposal in evaporation ponds. Long-term storage of OMW leads to the accumulation of toxic sediments (OMWS) rich in recalcitrant compounds with phytotoxic and antimicrobial properties, which limit their use for agronomic purpose. The aim of this study was to compare the effect of two in situ bioremediation strategies (composting and a combination of composting followed by vermicomposting) to remove the potential toxicity of the sediments derived from long-term stored OMW. The results obtained showed that the composting method assisted with the earthworms enhanced the depletion of phenolic compounds and OMWS ecotoxicity more than composting, especially during the maturation stage. Moreover, vermicomposting was more effective in the reduction of the OMWS salinity. However, a pre-composting process to the OMWS is necessary prior to vermicomposting to provide the suitable conditions for earthworms survival and activity. Furthermore, the final compost showed a phytostimulating effect. Therefore, these in situ bioremediation strategies can be considered potential tools for decontamination and recovery of long-term stored OMWS in evaporation ponds, which currently poses an unsolved environmental problem.
Assuntos
Compostagem , Olea , Biodegradação Ambiental , Resíduos Industriais/análise , Azeite de Oliva , Lagoas , Eliminação de Resíduos Líquidos , Águas ResiduáriasRESUMO
The increase in commercial pig production is an opportunity to reuse animal manures in arid and semiarid soils as a source of nutrients and organic matter. However, there are components in pig slurry that are potentially dangerous for the environment. In this study, pig slurries of 36 pig farms in South-eastern Spain were evaluated for salt content (electrical conductivity, chloride and sodium), organic load (BOD5 and COD), micronutrients (Fe, Cu, Mn and Zn), and heavy metals (Cd, Co, Cr, Ni and Pb). Except for electrical conductivity, Cu and Zn, components in pig slurries did not vary considerably between animal production stages, indicating similar management of diverse animal types. Assuming an application rate based on the maximum input of nitrogen from animal manure (210 kg total N/ha/yr), the estimates for soil annual load of Cl and Na, 415 kg/ha, could be a significant salinisation risk. Cu and Zn seemed to be the metals that could be accumulated most in soils where application of pig slurries is common (4 and 15 kg/ha/yr, respectively). The estimated heavy metal (Cd, Co, Cr, Ni and Pb) input to soils would be 260 g/ha/yr, with a relative contribution of Cr>Ni>Pb>Co>Cd.
Assuntos
Fertilizantes/análise , Esterco/análise , Metais Pesados/análise , Animais , Nitrogênio/análise , Salinidade , SuínosRESUMO
The winery and distillery industry produces a great quantity of residues, whose management and disposal are environmental problems due to their seasonal character and some polluting characteristics. The main solid by-products and residues generated are grape stalk, grape pomace or marc, wine lee, exhausted grape marc and winery sludge. In this study, 87 samples of winery and distillery residues were collected from different Spanish wineries and distilleries. Electrical conductivity, pH, total organic matter, organic carbon, polyphenols and contents of plant nutrients and heavy metals were determined. The purpose of this research was to study the composition of these wastes and to find relationships in order to use easily analysable parameters to estimate their composition. In general, the winery and distillery residues showed low pH (mean values ranged from 3.8 to 6.8) and electrical conductivity values (1.62-6.15 dS m(-1)) and high organic matter (669-920 g kg(-1)) and macronutrient contents, especially in K (11.9-72.8 g kg(-1)). However, a notable polyphenol concentration (1.2-19.0 g kg(-1)) and low micronutrient and heavy metal contents were also observed, some of these properties being incompatible with agricultural requirements. Therefore, conditioning treatments are necessary prior to possible use of these wastes. In all wastes, significant correlations were found between easily determined parameters, such as pH, electrical conductivity and total organic matter, and most of the parameters studied. The regression models obtained are also discussed.
Assuntos
Bebidas Alcoólicas , Fertilizantes/análise , Resíduos Industriais/análise , Carbono/análise , Conservação dos Recursos Naturais , Flavonoides/análise , Concentração de Íons de Hidrogênio , Metais/análise , Nitrogênio/análise , Fenóis/análise , Fósforo/análise , PolifenóisRESUMO
This work evaluates several co-composting scenarios based on the use of Arundo donax biomass (AD) as bulking agent for the co-composting of sewage sludge (MS) and agri-food sludge (AS), to manage these organic wastes and to produce balanced organic fertilizers by optimizing the process. For this, six piles were prepared in commercial composting conditions, using AD in a range of 40%-80% (on a dry weight basis). Physico-chemical and chemical parameters and the thermal behaviour were evaluated during the process, as were the physical and chemical parameters of the final composts. The proportion of AD in the mixtures has a significant effect on the development of the thermophilic stage of composting, showing the piles with higher proportion of AD a quicker organic matter degradation. In addition, the evolution of the thermal indices R1 and R2 was different depending on the origin of the sludge used, indicating an increase in the relative concentration of more recalcitrant materials in the piles prepared with AS. The estimation of the global warming potential showed that the use of higher proportion of AD in the composting mixture may be a strategy to mitigate the emission of greenhouse gases during the composting process. Moreover, the end-products obtained had an additional marketable value, with a balanced nutrient content and a good degree of maturity, which indicates the viability of the composting process as a method for the stabilization of these organic wastes.
RESUMO
The aim of this work was to study the influence of the organic wastes derived from the winery and distillery industry (grape stalk (GS), grape marc (GM), wine lees (WL) and exhausted grape marc (EG)) and the soil type (clayey-loam (S1), loam (S2) and sandy textured (S3)) on different soil characteristics, especially the carbon and nitrogen mineralisation. The evolution of C mineralisation fitted a first-order kinetic for all amended soils. An initial increase was observed in the specific respiration (qCO(2)) at the beginning of the experiment. However, afterwards, the evolution in the qCO(2) was to tend towards the values of the control soil due to the pattern of the soil to recover its initial equilibrium status. The addition of these materials in the soils produced a slight increase of the inorganic nitrogen content, except in the case of GS and EG in most of the studied soils. The use of GS as amendment produced an inhibition in the N mineralisation in the three types of soils studied. Organic matter mineralisation was probably influenced by soil type, the sandy soil favouring more the N and C mineralisation processes than the clayey-loam and loam soils.