Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 18(9): 985-994, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28714978

RESUMO

Glutamine metabolism provides synergistic support for macrophage activation and elicitation of desirable immune responses; however, the underlying mechanisms regulated by glutamine metabolism to orchestrate macrophage activation remain unclear. Here we show that the production of α-ketoglutarate (αKG) via glutaminolysis is important for alternative (M2) activation of macrophages, including engagement of fatty acid oxidation (FAO) and Jmjd3-dependent epigenetic reprogramming of M2 genes. This M2-promoting mechanism is further modulated by a high αKG/succinate ratio, whereas a low ratio strengthens the proinflammatory phenotype in classically activated (M1) macrophages. As such, αKG contributes to endotoxin tolerance after M1 activation. This study reveals new mechanistic regulations by which glutamine metabolism tailors the immune responses of macrophages through metabolic and epigenetic reprogramming.


Assuntos
Reprogramação Celular/imunologia , Epigênese Genética , Ácidos Cetoglutáricos/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Animais , Imunoprecipitação da Cromatina , Ciclo do Ácido Cítrico/imunologia , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Glutamina/metabolismo , Glicólise/imunologia , Ácidos Cetoglutáricos/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Metabolômica , Camundongos , NF-kappa B/imunologia , Oxirredução , Fosforilação Oxidativa , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Ácido Succínico/metabolismo
2.
Transfus Med Hemother ; 51(2): 101-110, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584699

RESUMO

Background: Pathogen inactivation treatment (PIT) has been shown to alter platelet function, phenotype, morphology and to induce a faster aging of platelet concentrates (PCs). Key pieces of information are still missing to understand the impacts of PITs at the cellular level. Objectives: This study investigated the impact of amotosalen/UVA on PCs, from a post-translational modifications (PTM) point of view. Phosphoproteomic analyses were conducted on resting platelets, right after the amotosalen/UVA treatment and compared with untreated PCs. Method: A two-arm study setting was carried out to compare PIT (amotosalen/UVA) to untreated PCs, on day 1 post-donation. Based on a pool-and-split approach, 12 PCs were split into two groups (treated and untreated). Quantitative phosphoproteomics was performed using TMT technology to study the changes of phosphoproteins right after the PIT. Results: A total of 3,906 proteins and 7,334 phosphosites were identified, and 2,473 proteins and 2,214 phosphosites were observed in at least 5 to 6 replicates. Compared to untreated platelets, PIT platelets exhibited an upregulation of the phosphorylation effects, with 109 phosphosites identified with a higher than 2-fold change. Two pathways were clearly identified. The mitogen activated protein kinases (MAPKs) cascade, which triggers the granule secretion and the activation of the pS15 HSPB1. One of the shape change pathways was also observed with the inhibition of the Threonine 18 and Serine 19 phosphorylations on myosin light chain (MLC) protein after the amotosalen/UVA treatment. Conclusions: This work provides a deep insight into the impact of amotosalen/UVA treatment from a phosphoprotein viewpoint on resting platelets. Clear changes in phosphorylation of proteins belonging to different platelet pathways were quantified. This discovery corroborates previous findings and fills missing parts of the effect of photochemical treatments on platelets.

3.
Transfusion ; 62(11): 2324-2333, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36190148

RESUMO

BACKGROUND: Storage of platelet concentrates (PCs) has an impact on platelet quality and possibly affects their functions after transfusion. The influence of processing and storage conditions of PCs on their in vivo function upon transfusion is unknown. One option for investigating this question is to implement an ex vivo labeling of human platelets, to analyze them after transfusion into heathy volunteers and/or patients. In this study, we developed two labeling methods employing biotin. METHODS: Two methods of biotinylation were compared to a control (standard PC). The "Bio-Wash" process used washing steps to label all platelets within the PC; for the other method, "Bio-Direct," one fifth of the PC were directly labeled without washing steps. The control and the two biotinylated PCs were analyzed over 7 days of storage. Labeling efficiency, platelet counts, phenotypes, and functions, along with time and costs, were evaluated to select the best process. RESULTS: Both methods achieved a stable labeling through the storage, with similar platelet counts and metabolism in comparison to control PCs. Bio-Wash showed higher activation phenotype and lower aggregation response in comparison to the Bio-Direct method. The Bio-Direct was performed within 1.5 h versus 3 h for the Bio-Wash. However, the Bio-Direct required 12 mg of biotin instead of 8 mg for the other process. CONCLUSION: We set up two methods of biotinylation that can be easily implemented in a blood bank environment. The Bio-Direct process was preferred to the Bio-Wash because of its similarity, from a functional and phenotypic point of view, with standard PCs.


Assuntos
Plaquetas , Transfusão de Plaquetas , Humanos , Plaquetas/metabolismo , Transfusão de Plaquetas/métodos , Bancos de Sangue , Biotinilação , Biotina/farmacologia , Biotina/metabolismo , Preservação de Sangue/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA