Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 58(1): 107-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28846437

RESUMO

Chlorine is a highly reactive gas that can cause significant injury when inhaled. Unfortunately, its use as a chemical weapon has increased in recent years. Massive chlorine inhalation can cause death within 4 hours of exposure. Survivors usually require hospitalization after massive exposure. No countermeasures are available for massive chlorine exposure and supportive-care measures lack controlled trials. In this work, adult rats were exposed to chlorine gas (LD58-67) in a whole-body exposure chamber, and given oxygen (0.8 FiO2) or air (0.21 FiO2) for 6 hours after baseline measurements were obtained. Oxygen saturation, vital signs, respiratory distress and neuromuscular scores, arterial blood gases, and hemodynamic measurements were obtained hourly. Massive chlorine inhalation caused severe acute respiratory failure, hypoxemia, decreased cardiac output, neuromuscular abnormalities (ataxia and hypotonia), and seizures resulting in early death. Oxygen improved survival to 6 hours (87% versus 42%) and prevented observed seizure-related deaths. However, oxygen administration worsened the severity of acute respiratory failure in chlorine-exposed rats compared with controls, with increased respiratory acidosis (pH 6.91 ± 0.04 versus 7.06 ± 0.01 at 2 h) and increased hypercapnia (180.0 ± 19.8 versus 103.2 ± 3.9 mm Hg at 2 h). In addition, oxygen did not improve neuromuscular abnormalities, cardiac output, or respiratory distress associated with chlorine exposure. Massive chlorine inhalation causes severe acute respiratory failure and multiorgan damage. Oxygen administration can improve short-term survival but appears to worsen respiratory failure, with no improvement in cardiac output or neuromuscular dysfunction. Oxygen should be used with caution after massive chlorine inhalation, and the need for early assisted ventilation should be assessed in victims.


Assuntos
Débito Cardíaco/efeitos dos fármacos , Substâncias para a Guerra Química/toxicidade , Cloro/toxicidade , Oxigênio/farmacologia , Insuficiência Respiratória , Doença Aguda , Animais , Hipercapnia/induzido quimicamente , Hipercapnia/tratamento farmacológico , Hipercapnia/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico , Insuficiência Respiratória/fisiopatologia
2.
Pain ; 155(5): 1037-1042, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530613

RESUMO

Implanted vagus nerve stimulation (VNS) has been used to treat seizures and depression. In this study, we explored the mechanism of action of noninvasive vagus nerve stimulation (nVNS) for the treatment of trigeminal allodynia. Rats were repeatedly infused with inflammatory mediators directly onto the dura, which led to chronic trigeminal allodynia. Administration of nVNS for 2 minutes decreased periorbital sensitivity in rats with periorbital trigeminal allodynia for up to 3.5 hours after stimulation. Using microdialysis, we quantified levels of extracellular neurotransmitters in the trigeminal nucleus caudalis (TNC). Allodynic rats showed a 7.7±0.9-fold increase in extracellular glutamate in the TNC after i.p. administration of the chemical headache trigger glyceryl trinitrate (GTN; 0.1 mg/kg). Allodynic rats that received nVNS had only a 2.3±0.4-fold increase in extracellular glutamate after GTN, similar to the response in control naive rats. When nVNS was delayed until 120 minutes after GTN treatment, the high levels of glutamate in the TNC were reversed after nVNS. The nVNS stimulation parameters used in this study did not produce significant changes in blood pressure or heart rate. These data suggest that nVNS may be used to treat trigeminal allodynia.


Assuntos
Hiperalgesia/terapia , Neuralgia do Trigêmeo/terapia , Estimulação do Nervo Vago/métodos , Animais , Dura-Máter/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Cefaleia/induzido quimicamente , Cefaleia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Masculino , Microdiálise , Nitroglicerina , Prostaglandinas , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento , Neuralgia do Trigêmeo/induzido quimicamente , Neuralgia do Trigêmeo/metabolismo , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA