RESUMO
BACKGROUND: Obsessive-compulsive disorder (OCD) is a psychiatric condition leading to significant distress and poor quality of life. Successful treatment of OCD is restricted by the limited knowledge about its pathophysiology. This study aimed to investigate the pathophysiology of OCD using electroencephalographic (EEG) event-related potentials (ERPs), elicited from multiple tasks to characterise disorder-related differences in underlying brain activity across multiple neural processes. METHODS: ERP data were obtained from 25 OCD patients and 27 age- and sex-matched healthy controls (HCs) by recording EEG during flanker and go/nogo tasks. Error-related negativity (ERN) was elicited by the flanker task, while N200 and P300 were generated using the go/nogo task. Primary comparisons of the neural response amplitudes and the topographical distribution of neural activity were conducted using scalp field differences across all time points and electrodes. RESULTS: Compared to HCs, the OCD group showed altered ERP distributions. Contrasting with the previous literature on ERN and N200 topographies in OCD where fronto-central negative voltages were reported, we detected positive voltages. Additionally, the P300 was found to be less negative in the frontal regions. None of these ERP findings were associated with OCD symptom severity. CONCLUSIONS: These results indicate that individuals with OCD show altered frontal neural activity across multiple executive function-related processes, supporting the frontal dysfunction theory of OCD. Furthermore, due to the lack of association between altered ERPs and OCD symptom severity, they may be considered potential candidate endophenotypes for OCD.
Assuntos
Transtorno Obsessivo-Compulsivo , Qualidade de Vida , Humanos , Potenciais Evocados/fisiologia , Encéfalo , Eletroencefalografia/métodosRESUMO
Improving diagnostic accuracy of obsessive-compulsive disorder (OCD) using models of brain imaging data is a key goal of the field, but this objective is challenging due to the limited size and phenotypic depth of clinical datasets. Leveraging the phenotypic diversity in large non-clinical datasets such as the UK Biobank (UKBB), offers a potential solution to this problem. Nevertheless, it remains unclear whether classification models trained on non-clinical populations will generalise to individuals with clinical OCD. This question is also relevant for the conceptualisation of OCD; specifically, whether the symptomology of OCD exists on a continuum from normal to pathological. Here, we examined a recently published "meta-matching" model trained on functional connectivity data from five large normative datasets (N=45,507) to predict cognitive, health and demographic variables. Specifically, we tested whether this model could classify OCD status in three independent clinical datasets (N=345). We found that the model could identify out-of-sample OCD individuals. Notably, the most predictive functional connectivity features mapped onto known cortico-striatal abnormalities in OCD and correlated with genetic brain expression maps previously implicated in the disorder. Further, the meta-matching model relied upon estimates of cognitive functions, such as cognitive flexibility and inhibition, to successfully predict OCD. These findings suggest that variability in non-clinical brain and behavioural features can discriminate clinical OCD status. These results support a dimensional and transdiagnostic conceptualisation of the brain and behavioural basis of OCD, with implications for research approaches and treatment targets.
RESUMO
The brain works as an organised, network-like structure of functionally interconnected regions. Disruptions to interconnectivity in certain networks have been linked to symptoms of depression and impairments in cognition. Electroencephalography (EEG) is a low-burden tool by which differences in functional connectivity (FC) can be assessed. This systematic review aims to provide a synthesis of evidence relating to EEG FC in depression. A comprehensive electronic literature search for terms relating to depression, EEG, and FC was conducted on studies published before the end of November 2021, according to PRISMA guidelines. Studies comparing EEG measures of FC of individuals with depression to that of healthy control groups were included. Data was extracted by two independent reviewers, and the quality of EEG FC methods was assessed. Fifty-two studies assessing EEG FC in depression were identified: 36 assessed resting-state FC, and 16 assessed task-related or other (i.e., sleep) FC. Somewhat consistent findings in resting-state studies suggest for no differences between depression and control groups in EEG FC in the delta and gamma frequencies. However, while most resting-state studies noted a difference in alpha, theta, and beta, no clear conclusions could be drawn about the direction of the difference, due to considerable inconsistencies between study design and methodology. This was also true for task-related and other EEG FC. More robust research is needed to understand the true differences in EEG FC in depression. Given that the FC between brain regions drives behaviour, cognition, and emotion, characterising how FC differs in depression is essential for understanding the aetiology of depression.
Assuntos
Encéfalo , Depressão , Humanos , Encéfalo/fisiologia , Depressão/fisiopatologia , Eletroencefalografia , Estudos de Casos e ControlesRESUMO
Obsessive-Compulsive Disorder (OCD) is a mental health condition causing significant decline in the quality of life of sufferers and the limited knowledge on the pathophysiology hinders successful treatment. The aim of the current study was to examine electroencephalographic (EEG) findings of OCD to broaden our understanding of the disease. Resting-state eyes-closed EEG data was recorded from 25 individuals with OCD and 27 healthy controls (HC). The 1/f arrhythmic activity was removed prior to computing oscillatory powers of all frequency bands (delta, theta, alpha, beta, gamma). Cluster-based permutation was used for between-group statistical analyses, and comparisons were performed for the 1/f slope and intercept parameters. Functional connectivity (FC) was measured using coherence and debiased weighted phase lag index (d-wPLI), and statistically analyzed using the Network Based Statistic method. Compared to HC, the OCD group showed increased oscillatory power in the delta and theta bands in the fronto-temporal and parietal brain regions. However, there were no significant between-group findings in other bands or 1/f parameters. The coherence measure showed significantly reduced FC in the delta band in OCD compared to HC but the d-wPLI analysis showed no significant differences. OCD is associated with raised oscillatory power in slow frequency bands in the fronto-temporal brain regions, which agrees with the previous literature and therefore is a potential biomarker. Although delta coherence was found to be lower in OCD, due to inconsistencies found between measures and the previous literature, further research is required to ascertain definitive conclusions.