Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Agric Food Chem ; 70(40): 12916-12924, 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36174191

RESUMO

Conradina verticillata Jennison, commonly known as Cumberland Rosemary, is an endangered plant from the mint family Lamiaceae. This species is a flowering, perennial shrub found only in a few counties in Kentucky and Tennessee. Although the odorants responsible for Cumberland Rosemary's unique aroma have not been previously characterized, in this study, a total of 32 odorants were identified using gas chromatography-olfactometry (GC-O) and gas chromatography-mass spectrometry (GC-MS). Odorant flavor dilution (FD) factors were determined through the application of aroma extract dilution analysis (AEDA). Seven odorants with FD factors ≥64 were quantitated by stable isotope dilution assays (SIDA), and their odor activity values (OAV) were calculated. Odorants with OAV ≥1 included 1-octen-3-one (earthy-mushroom, OAV 2,900,000), 1,8-cineole (eucalyptus, OAV 510,000), borneol (earthy, OAV 10,000), bornyl acetate (earthy-fruity, OAV 3,700), eugenol (spicy, OAV 2,200), menthone (mint, OAV 130), and camphor (herbaceous, OAV 72). Sensory analysis revealed that an odor simulation model based on the quantitative data was a close match to the aroma of the plant. Omission studies determined that 1-octen-3-one, 1,8-cineole, and eugenol were the key odorants critical to Cumberland Rosemary's distinct aroma profile. The stereochemistry of selected odorants was also determined by chiral chromatography. This study established a foundation for future experiments on the aroma chemistry of C. verticillata and the other six members of the Conradina genus.


Assuntos
Lamiaceae , Rosmarinus , Compostos Orgânicos Voláteis , Cânfora/análise , Eucaliptol/análise , Eugenol/análise , Cromatografia Gasosa-Espectrometria de Massas , Cetonas , Odorantes/análise , Olfatometria , Compostos Orgânicos Voláteis/química
2.
Sci Rep ; 12(1): 21427, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36503913

RESUMO

High traffic touch surfaces such as doorknobs, countertops, and handrails can be transmission points for the spread of pathogens, emphasizing the need to develop materials that actively self-sanitize. Metals are frequently used for these surfaces due to their durability, but many metals also possess antimicrobial properties which function through a variety of mechanisms. This work investigates metallic alloys comprised of several metals which individually possess antimicrobial properties, with the target of achieving broad-spectrum, rapid sanitation through synergistic activity. An entropy-motivated stabilization paradigm is proposed to prepare scalable alloys of copper, silver, nickel and cobalt. Using combinatorial sputtering, thin-film alloys were prepared on 100 mm wafers with ≈50% compositional grading of each element across the wafer. The films were then annealed and investigated for alloy stability. Antimicrobial activity testing was performed on both the as-grown alloys and the annealed films using four microorganisms-Phi6, MS2, Bacillus subtilis and Escherichia coli-as surrogates for human viral and bacterial pathogens. Testing showed that after 30 s of contact with some of the test alloys, Phi6, an enveloped, single-stranded RNA bacteriophage that serves as a SARS-CoV-2 surrogate, was reduced up to 6.9 orders of magnitude (> 99.9999%). Additionally, the non-enveloped, double-stranded DNA bacteriophage MS2, and the Gram-negative E. coli and Gram-positive B. subtilis bacterial strains showed a 5.0, 6.4, and 5.7 log reduction in activity after 30, 20 and 10 min, respectively. Antimicrobial activity in the alloy samples showed a strong dependence on the composition, with the log reduction scaling directly with the Cu content. Concentration of Cu by phase separation after annealing improved activity in some of the samples. The results motivate a variety of themes which can be leveraged to design ideal antimicrobial surfaces.


Assuntos
Anti-Infecciosos , COVID-19 , Humanos , Ligas/farmacologia , Escherichia coli , SARS-CoV-2 , Anti-Infecciosos/farmacologia
3.
J Agric Food Chem ; 68(36): 9768-9775, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32840362

RESUMO

The American Matsutake, Tricholoma magnivelare (Peck) Redhead, is an edible wild mushroom with a distinctive aroma described as mushroom and spice with subtle floral and citrus nuances. In this study, a total of 36 odorants were identified from T. magnivelare using solvent-assisted flavor evaporation and aroma extract dilution analysis. Stable isotope dilution assays were performed to quantitate 14 odorants with flavor dilution factors ≥64. Odorants with high odor activity values (OAVs) included 1-octen-3-one (OAV 2125), linalool (OAV 650), (2E,4E)-nona-2,4-dienal (OAV 304), and 1-octen-3-ol (OAV 206). An odor simulation model matched the odor profile of the fresh mushroom. Omission studies showed that linalool, hexanal, (2E,4E)-nona-2,4-dienal, methyl (E)-3-phenylprop-2-enoate, and 1-octen-3-one or 1-octen-3-ol were essential to the aroma of T. magnivelare. Chiral chromatography showed that α-pinene was a scalemic mixture of 34% (R)-(+) to 66% (S)-(-), while 1-octen-3-ol was present as 95% (R)-(-) to 5% (S)-(+), and linalool was 96% (R)-(-) to 4% (S)-(+). These results establish the base for future investigations into the aroma chemistry of other members of the genus Tricholoma.


Assuntos
Agaricales/química , Aromatizantes/química , Odorantes/análise , Aldeídos/química , Cromatografia Gasosa-Espectrometria de Massas , Cetonas/química , Monoterpenos/química , Estados Unidos
4.
J Agric Food Chem ; 68(32): 8621-8628, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32786723

RESUMO

The fragrant bolete, Suillus punctipes (Peck) Singer, is an edible mushroom with a unique aroma reminiscent of mushroom and citrus peel with an undertone of apricot. Thirty-five odorants were identified using solvent-assisted flavor evaporation (SAFE) and aroma extract dilution analysis (AEDA). Fourteen odorants including those with flavor dilution (FD) factors ≥64 were quantitated using stable isotope dilution assays (SIDA). Some odorants with high OAVs included 1-octen-3-one (OAV 164368), 1-octen-3-ol (OAV 3421), linalool (OAV 812), and nonanal (OAV 487). An odor simulation model was prepared closely matching the aroma of the mushroom. Omissions experiments revealed that 1-octen-3-one, 1-octen-3-ol, (2E)-oct-2-enal, linalool, δ-dodecalactone, and a mixture of three aldehydes, octanal, nonanal, and decanal, were essential odorants for the aroma profile. Enantiomeric ratios were determined for several odorants employing chiral chromatography. The results from this study lay the groundwork for future studies in the aroma chemistry of S. punctipes and other mushrooms from the Suillus genus.


Assuntos
Basidiomycota/química , Aromatizantes/química , Compostos Orgânicos Voláteis/química , Agaricales/química , Cromatografia Gasosa-Espectrometria de Massas , Odorantes/análise
5.
J Ethnopharmacol ; 258: 112766, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32194231

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The bulbs and flowers of plants from the Lilium genus have historically been used in Asian and Greco-Roman medicine to treat burns and promote skin healing. AIM OF THE STUDY: To evaluate a steroidal glycoalkaloid isolated from Easter lily bulbs for its potential wound healing promoting properties. MATERIALS AND METHODS: A lily-derived steroidal glycoalkaloid (LSGA), (22R, 25R)-spirosol-5-en-3ß-yl O-α-L-rhamnopyranosyl-(1→2)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranoside, was isolated from Easter lily bulbs, and its structure was confirmed by LC-MS and NMR spectrometry. LSGA effects on wound scratch closure were evaluated in a primary human dermal fibroblast cell culture, and the changes in gene expression profiles were quantitated using an 84 wound-related gene qPCR microarray. RESULTS: LSGA promoted migration of dermal fibroblasts into the wounded area. The treatment was associated with a rapid upregulation of early inflammatory (CD40LG, CXCL11, IFNG, IL10, IL2 and IL4), cell growth (CSF3 and TNF) and remodeling (CTSG, F13A1, FGA, MMP and PLG) genes both in the wounded and unwounded cells treated with LSGA. A selective decrease in gene expression profiles associated with inflammatory (CXCL2 and CCL7) and remodeling (MMP7 and PLAT) phases was observed in wounded cells treated with LSGA, in contrast to the wounded cells (control). CONCLUSION: This study demonstrates that a glycoalkaloid present in lilies promoted fibroblast migration in vitro and affected inflammatory, remodeling and growth factor gene expression. The decreases in expression of key genes may impact the wound healing process, possibly contributing to an earlier end of the inflammatory response and shortening the early phases of model tissue reconstitution. The results of this preliminary investigation may provide a basis for the historical use of lily bulbs to promote dermal healing after injury.


Assuntos
Alcaloides/farmacologia , Glicosídeos/farmacologia , Inflamação/tratamento farmacológico , Lilium/química , Alcaloides/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Líquida , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Flores , Regulação da Expressão Gênica/efeitos dos fármacos , Glicosídeos/isolamento & purificação , Humanos , Inflamação/patologia , Raízes de Plantas , Cicatrização/efeitos dos fármacos
6.
ACS Omega ; 4(6): 10670-10676, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31460164

RESUMO

An activity-guided fractionation approach revealed several phenylpropanoid glycerol glucosides isolated from the bulbs of Lilium longiflorum Thunb. (Easter lily) with gluconeogenesis inhibitory activities. The strongest activity was observed for (2S)-1-O-p-coumaroyl-2-O-ß-d-glucopyranosylglycerol (3), (2S)-1-O-caffeoyl-2-O-ß-d-glucopyranosylglycerol (1), and (2R)-1-O-ß-d-glucopyranosyl-2-O-p-coumaroylglycerol (2) with inhibitions of 51.2, 39.2, and 36.8%, respectively. The p-coumaroyl-based (3) and its acetylated derivative (5) exhibited differential inhibition activity (51.2% as compared to 3.6%), suggesting that natural acetylation decreases the hypoglycemic activity of these compounds. Direct structure-activity analysis of phenylpropanoid glycerol glucosides indicated that the hydroxylation pattern of the hydroxy cinnamic acid moiety and acetylation were responsible for the differences in activity. This is the first report of phenylpropanoid glycerol glucosides as a phytochemical class of hepatic glucose production inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA