Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 31(4): 520-530, 2008 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-18722178

RESUMO

Retinoblastoma protein (pRB) mediates cell-cycle withdrawal and differentiation by interacting with a variety of proteins. RB-Binding Protein 2 (RBP2) has been shown to be a key effector. We sought to determine transcriptional regulation by RBP2 genome-wide by using location analysis and gene expression profiling experiments. We describe that RBP2 shows high correlation with the presence of H3K4me3 and its target genes are separated into two functionally distinct classes: differentiation-independent and differentiation-dependent genes. The former class is enriched by genes that encode mitochondrial proteins, while the latter is represented by cell-cycle genes. We demonstrate the role of RBP2 in mitochondrial biogenesis, which involves regulation of H3K4me3-modified nucleosomes. Analysis of expression changes upon RBP2 depletion depicted genes with a signature of differentiation control, analogous to the changes seen upon reintroduction of pRB. We conclude that, during differentiation, RBP2 exerts inhibitory effects on multiple genes through direct interaction with their promoters.


Assuntos
Diferenciação Celular/genética , Genoma Humano/genética , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisina/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Sítios de Ligação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Humanos , Metilação , Mitocôndrias/enzimologia , Modelos Biológicos , Nucleossomos/enzimologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteína 2 de Ligação ao Retinoblastoma , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
2.
Proc Natl Acad Sci U S A ; 103(15): 5899-904, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16595631

RESUMO

The NF-kappaB family of transcription factors plays a critical role in numerous cellular processes, particularly the immune response. Our understanding of how the different NF-kappaB subunits act coordinately to regulate gene expression is based on a limited set of genes. We used genome-scale location analysis to identify targets of all five NF-kappaB proteins before and after stimulation of monocytic cells with bacterial lipopolysaccharide (LPS). In unstimulated cells, p50 and p52 bound to a large number of gene promoters that were also occupied by RNA polymerase II. After LPS stimulation, additional NF-kappaB subunits bound to these genes and to other genes. Genes that became bound by multiple NF-kappaB subunits were the most likely to show increases in RNA polymerase II occupancy and gene expression. This study identifies NF-kappaB target genes, reveals how the different NF-kappaB proteins coordinate their activity, and provides an initial map of the transcriptional regulatory network that underlies the host response to infection.


Assuntos
Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Genoma Humano , Humanos , NF-kappa B/efeitos dos fármacos , Ligação Proteica , Subunidades Proteicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transcrição Gênica/efeitos dos fármacos , Células U937
3.
Cell ; 125(2): 301-13, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16630818

RESUMO

Polycomb group proteins are essential for early development in metazoans, but their contributions to human development are not well understood. We have mapped the Polycomb Repressive Complex 2 (PRC2) subunit SUZ12 across the entire nonrepeat portion of the genome in human embryonic stem (ES) cells. We found that SUZ12 is distributed across large portions of over two hundred genes encoding key developmental regulators. These genes are occupied by nucleosomes trimethylated at histone H3K27, are transcriptionally repressed, and contain some of the most highly conserved noncoding elements in the genome. We found that PRC2 target genes are preferentially activated during ES cell differentiation and that the ES cell regulators OCT4, SOX2, and NANOG cooccupy a significant subset of these genes. These results indicate that PRC2 occupies a special set of developmental genes in ES cells that must be repressed to maintain pluripotency and that are poised for activation during ES cell differentiation.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco/fisiologia , Animais , Proteínas de Transporte/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Complexos Multiproteicos , Proteínas de Neoplasias , Proteínas Nucleares , Análise de Sequência com Séries de Oligonucleotídeos , Complexo Repressor Polycomb 2 , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Mol Cell ; 18(6): 623-35, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15949438

RESUMO

pRB can enforce a G1 block by repressing E2F-responsive promoters. It also coactivates certain non-E2F transcription factors and promotes differentiation. Some pRB variants activate transcription and promote differentiation despite impaired E2F binding and transcriptional repression capabilities. We identified RBP2 in a screen for proteins that bind to such pRB variants. RBP2 resembles other chromatin-associated transcriptional regulators and RBP2 binding tracked with pRB's ability to activate transcription and promote differentiation. RBP2 and pRB colocalize and pRB/RBP2 complexes were detected in chromatin isolated from differentiating cells. RBP2 siRNA phenocopied restoration of pRB function in coactivation and differentiation assays, suggesting that pRB prevents RBP2 from repressing genes required for differentiation. In addition, two bromodomain-containing proteins were identified as RBP2 targets that are transcriptionally activated by pRB in an RBP2-dependent manner. Our results suggest that promotion of differentiation by pRB involves neutralization of free RBP2 and transcriptional activation of RBP2 targets linked to euchromatin maintenance.


Assuntos
Diferenciação Celular/fisiologia , Proteínas/metabolismo , Proteína do Retinoblastoma/metabolismo , Animais , Sequência de Bases , Células Cultivadas , Cromatina/metabolismo , Primers do DNA , Fibroblastos/fisiologia , Humanos , Camundongos , Camundongos Knockout , Plasmídeos , RNA Interferente Pequeno/genética , Proteína do Retinoblastoma/deficiência , Proteína do Retinoblastoma/genética , Proteína p130 Retinoblastoma-Like , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/metabolismo , Transfecção
5.
Cell ; 122(6): 947-56, 2005 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-16153702

RESUMO

The transcription factors OCT4, SOX2, and NANOG have essential roles in early development and are required for the propagation of undifferentiated embryonic stem (ES) cells in culture. To gain insights into transcriptional regulation of human ES cells, we have identified OCT4, SOX2, and NANOG target genes using genome-scale location analysis. We found, surprisingly, that OCT4, SOX2, and NANOG co-occupy a substantial portion of their target genes. These target genes frequently encode transcription factors, many of which are developmentally important homeodomain proteins. Our data also indicate that OCT4, SOX2, and NANOG collaborate to form regulatory circuitry consisting of autoregulatory and feedforward loops. These results provide new insights into the transcriptional regulation of stem cells and reveal how OCT4, SOX2, and NANOG contribute to pluripotency and self-renewal.


Assuntos
Transplante de Células/fisiologia , Embrião de Mamíferos/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genes Reguladores/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Genes Reguladores/genética , Proteínas HMGB/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Regiões Promotoras Genéticas , Ligação Proteica , Fatores de Transcrição SOXB1 , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Fatores de Transcrição/metabolismo
6.
Science ; 303(5662): 1378-81, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14988562

RESUMO

The transcriptional regulatory networks that specify and maintain human tissue diversity are largely uncharted. To gain insight into this circuitry, we used chromatin immunoprecipitation combined with promoter microarrays to identify systematically the genes occupied by the transcriptional regulators HNF1alpha, HNF4alpha, and HNF6, together with RNA polymerase II, in human liver and pancreatic islets. We identified tissue-specific regulatory circuits formed by HNF1alpha, HNF4alpha, and HNF6 with other transcription factors, revealing how these factors function as master regulators of hepatocyte and islet transcription. Our results suggest how misregulation of HNF4alpha can contribute to type 2 diabetes.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Proteínas de Homeodomínio/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas Nucleares , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Metabolismo dos Carboidratos , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/genética , Perfilação da Expressão Gênica , Genoma Humano , Gluconeogênese , Fator 1 Nuclear de Hepatócito , Fator 1-alfa Nuclear de Hepatócito , Fator 1-beta Nuclear de Hepatócito , Fator 4 Nuclear de Hepatócito , Fator 6 Nuclear de Hepatócito , Humanos , Metabolismo dos Lipídeos , Análise de Sequência com Séries de Oligonucleotídeos , Testes de Precipitina , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Transcrição Gênica
7.
Science ; 298(5594): 799-804, 2002 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-12399584

RESUMO

We have determined how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells. Just as maps of metabolic networks describe the potential pathways that may be used by a cell to accomplish metabolic processes, this network of regulator-gene interactions describes potential pathways yeast cells can use to regulate global gene expression programs. We use this information to identify network motifs, the simplest units of network architecture, and demonstrate that an automated process can use motifs to assemble a transcriptional regulatory network structure. Our results reveal that eukaryotic cellular functions are highly connected through networks of transcriptional regulators that regulate other transcriptional regulators.


Assuntos
Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Algoritmos , Ciclo Celular , Biologia Computacional , DNA Fúngico/genética , DNA Fúngico/metabolismo , Retroalimentação Fisiológica , Perfilação da Expressão Gênica , Genoma Fúngico , Modelos Genéticos , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA